Use 8 pages. Do a separate problem on each page. Write your name on each page. Do not staple.

1. (15 points $=5+5+5)$ (a) Let $h(m)=m\left(\bmod 2^{128}\right)$. Why is $h(m)$ a bad cryptographic hash function?
(b) Suppose Alice encrypts a 20-bit message by using a one-time pad. Eve intercepts the ciphertext and tries to use a brute force attack to determine the correct plaintext and the key? Will she succeed? Why or why not?
(c) Let E_{K} be the encryption function for DES using the key K. Suppose K consists of a string of sixty-four 1's. Explain why $E_{K}\left(E_{K}(m)\right)=m$ for every message m.
2. (14 points $=7+7$) Let p and q be two distinct,large primes, and let $n=p q$.
(a) Suppose Eve knows a number x such that $x^{2} \equiv 4(\bmod n)$, but $x \not \equiv \pm 2(\bmod n)$. How can Eve factor n ?
(b) Suppose Alice knows p and q. Describe how she can find a number x such that $x^{2} \equiv 4$ $(\bmod n)$, but $x \not \equiv \pm 2(\bmod n)$.
3. (15 points $=10+5$) (a) Let p and q be two distinct, large primes, and let $n=p q$. Let d and e be integers such that $d e \equiv 1(\bmod (p-1)(q-1))$. Suppose $\operatorname{gcd}(x, n)=1$. Show that if $c \equiv x^{e}(\bmod n)$, then $x \equiv c^{d}(\bmod n)$. You must indicate explicitly how Euler's theorem is being used. (You may not simply say that the problem is true because RSA works; this is what you are proving.)
(b) Suppose Bob's public key is $n=2181606148950875138077$ and he has $e=7$ as his encryption exponent. Alice encrypts the message hi eve $=080900052205=m$. By chance, the message m satisfies $m^{3} \equiv 1(\bmod n)$. If Eve intercepts the ciphertext, how can Eve read the message without factoring n ?
4. (13 points $=9+4$) (a) Let $E \bmod p$ be an elliptic curve mod a large prime p. Let A and B be points on E and suppose $B=k A$ for some integer k. Peggy claims that she knows k. She wants to prove this to Victor without allowing Victor to determine k. Peggy starts by doing the following:
(i) She chooses a random integer r_{1} and lets $r_{2}=k-r_{1}$.
(ii) She computes $X_{1}=r_{1} A$ and $X_{2}=r_{2} A$.
(iii) She sends X_{1}, X_{2} to Victor.

Describe what Victor and Peggy should do to complete the zero knowledge proof? (Victor should be at least 99.9% convinced.)
(b) Describe the analogue of the above steps (i), (ii), (iii) for proving that Peggy knows the solution to a classical discrete log problem $\left(\beta \equiv \alpha^{k}(\bmod p)\right)$.
5. (10 points $=5+5$) Recall the verification for the ElGamal signature scheme: Alice has published numbers p, α, β. A signature (m, r, s) is valid if $\alpha^{m} \equiv \beta^{r} r^{s}(\bmod p)$. Here is the basic existential forgery attack. Eve chooses u, v such that $\operatorname{gcd}(v, p-1)=1$. She computes $r \equiv \beta^{v} \alpha^{u}(\bmod p)$ and $s \equiv-r v^{-1}(\bmod p-1)$.
(a) Prove that the pair (r, s) is a valid signature for the message $m=s u(\bmod p-1)$ (of course, it is likely that m is not a meaningful message).
(b) Suppose a hash function h is used and the signature must be valid for $h(m)$ instead of for m (so we need to have $h(m)=s u$). Explain how this scheme protects against existential forgery. That is, explain why it is hard to produce a forged, signed message by the this procedure.
6. (13 points $=5+5+3$) (a) The sequence $001001001 \cdots$ is generated by a third order recurrence $x_{n+3} \equiv c_{0} x_{n}+c_{1} x_{n+1}+c_{2} x_{n+2}(\bmod 2)$. Find c_{0}, c_{1}, c_{2}.
(b) Consider the elliptic curve $y^{2} \equiv x^{3}+3(\bmod 7)$. Find the sum of the points $(1,2)$ and $(6,3)$.
(c) Eve tries to find the sum of the points $(1,2)$ and $(6,3)$ on the elliptic curve $y^{2} \equiv x^{3}+3$ $(\bmod 35)$. What information does she obtain?
7. (13 points $=5+3+3+2)$ Let p be a large prime and suppose $\alpha^{\left(10^{18}\right)} \equiv 1(\bmod p)$. Suppose $\beta \equiv \alpha^{k}(\bmod p)$ for some integer k. You want to determine k.
(a) Explain why we may assume that $0 \leq k<10^{18}$.
(b) Describe a birthday attack to find k
(c) Describe a Baby Step, Giant step attack to find k. (Hint: One list can contain numbers of the form $\beta \alpha^{-10^{9} j}$.)
(d) State at least one significant difference between the attacks in (b) and (c).
8. (7 points) The ciphertext $\operatorname{GBSP}(=6,1,18,15)$ is intercepted by Eve. She finds out that an affine cipher is being used and that the plaintext starts $d o(=3,14)$. Determine the two remaining letters of the plaintext.

