1. (a) It is very easy to find collisions. For example, $h\left(m+2^{128}\right)=h(m)$. Also, it is easy to find preimages: if $0<y<2^{128}$, then $h(y)=y$.
(b) Eve will not succeed. She will obtain each 20-bit message exactly once. There will be no way to determine which is the correct plaintext and corresponding key.
(c) The key for each round is extracted from these 64 bits, so the key for each round consists of all 1's. Decryption is accomplished by using these keys in reverse order. Since they are all the same, reverse order is the same as non-reverse order. Therefore, encryption is the same as decryption, so $E_{K}\left(E_{K}(m)\right)=m$.
2. Let p and q be two distinct,large primes, and let $n=p q$.
(a) $\operatorname{gcd}(x-2, n)$ is a nontrivial factor of n, therefore p or q.
(b) Alice uses the Chinese Remainder Theorem to find x satisfying $x \equiv 2(\bmod p)$ and $x \equiv-2(\bmod q)$. Then $x^{2} \equiv 4(\bmod p)$ and $(\bmod q)$, hence $(\bmod n)$, but $x \not \equiv \pm 2$ $(\bmod n)$.
3. (a) $d e=1+(p-1)(q-1) k$ for some integer k. Therefore,

$$
c^{d} \equiv x^{d e} \equiv x \cdot\left(x^{(p-1)(q-1)}\right)^{k} \equiv x \cdot 1^{k} \quad(\bmod n)
$$

by Euler's Theorem. Therefore, $c^{d} \equiv x$.
(b) Since $m^{3} \equiv 1(\bmod n)$, the ciphertext is $c \equiv m^{7} \equiv m \cdot\left(m^{3}\right)^{2} \equiv m \cdot 1^{2} \equiv m(\bmod n)$. Therefore, the ciphertext is the plaintext, so Eve can read it without any decryption.
4. (a) Victor checks that $X_{1}+X_{2}=B$. Then he chooses $i=1$ or 2 at random and asks Peggy to send r_{i}. Victor then checks that $X_{i}=r_{i} A$. They repeat the procedure, starting with (i), at least 10 times (since $2^{-10}<.001$).
(b) (i) Peggy chooses random r_{1} and lets $r_{2}=k-r_{1}$. (ii) Peggy computes $x_{1} \equiv \alpha^{r_{1}}$ and $x_{2} \equiv \alpha^{r_{2}}(\bmod p)$. (iii) Peggy sends x_{1}, x_{2} to Victor.
5. (a) We have $v_{1} \equiv \beta^{r} r^{-r v^{-1}} \equiv \beta^{r}\left(\beta^{v} \alpha^{u}\right)^{-r v^{-1}} \equiv \alpha^{a r-a r v v^{-1}-u r v^{-1}} \equiv \alpha^{-u r v^{-1}}$, and $v_{2} \equiv \alpha^{m} \equiv \alpha^{s u} \equiv \alpha^{-r u v^{-1}}$. Therefore $v_{1} \equiv v_{2}$, so the signature is valid.
(b) We need the message m to satisfy $h(m) \equiv s u(\bmod p-1)$ Since h is preimage resistant, this is hard to do.
6. (a) We have the matrix equation

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

This yields $c_{0}=1, c_{1}=0, c_{2}=0$.
(b) The line through $(1,2)$ and $(6,3)$ is $y \equiv \frac{1}{5}(x-1)+2 \equiv 3 x+6(\bmod 7)$. Intersect with the curve: $(3 x+6)^{2} \equiv x^{3}+3$. The sum of the roots is the negative of the coefficient of x^{2}, so $9 \equiv 1+6+x$, which yields $x=2$. The third point of intersection has $y=3 x+6 \equiv 5$
(mod 7). Reflect across the x-axis to get $(2,2)$.
(c) The slope of the line through the two points is $1 / 5(\bmod 35)$. When she tries to evaluate $1 / 5(\bmod 35)$, she finds $\operatorname{gcd}(5,35)=5$, so she obtains a factor of 35 . (This is what happens in the elliptic curve factorization method.)
7. (a) Since $\alpha^{10^{18}} \equiv 1$, the powers of α repeat after 10^{18} steps, so the answer to the discrete \log can be taken to be less than 10^{18}.
(b) Make two lists: First: $\beta \alpha^{-i}$ for around 10^{9} random choices of i. Second: α^{j} for around 10^{9} random choices of j. We expect a match: $\beta \alpha^{-i} \equiv \alpha^{j}$, which yields $k=i+j$.
(c) The first list contains the numbers $\beta \alpha^{-10^{9}}$ if $0 \leq i<10^{9}$. The second list contains α^{j} for $0 \leq j<10^{9}$. A match yields $k=i+10^{9} j$. Since every k with $0 \leq k<10^{18}$ can be written in this form, we always get a match.
(d) The attack in (c) is deterministic: it guarantees success (and it guarantees exactly one match). The attack in (b) is probabilistic: it has a good chance of success (and it might produce no matches, or it might produce several matches).
8. Let the decryption function be $y=\alpha x+\beta(\bmod 26)$. We are given that $3 \equiv \alpha \cdot 6+\beta$ and that $14 \equiv \alpha \cdot 1+\beta$. Subtracting yields $11 \equiv-5 \alpha(\bmod 26)$. This yields $\alpha \equiv 3$. Therefore, $\beta \equiv 3-6 \cdot \alpha \equiv 11$. The decryption function is $y=3 x+11(\bmod 26)$. Therefore $S=18$ decrypts to $13=n$, and $P=15$ decrypts to $4=e$. The plaintext is done.

