Math 620: HW \#1

1. Let R be a Dedekind domain and let I be a nonzero ideal of R. Suppose that I^{2} and I^{3} are principal ideals. Show that I is principal.
2. Consider the equation $y^{2}=x^{3}-13$, where x and y are integers.
(a) Show that x cannot be even.
(b) Show that $13 \nmid y$.
(c) Let \mathfrak{p} be a prime ideal in $\mathbb{Z}[\sqrt{-13}]$ and suppose \mathfrak{p} divides both $y+\sqrt{-13}$ and $y-\sqrt{-13}$. Show that \mathfrak{p} divides either 2 or 13 .
(d) Show that if \mathfrak{p} divides 2 then x is even and if \mathfrak{p} divides 13 then $13 \mid y$.
(e) Show that $y+\sqrt{-13}$ and $y-\sqrt{-13}$ are relatively prime in $\mathbb{Z}[\sqrt{-13}]$.
(f) You may assume that the class number of $\mathbb{Z}[\sqrt{-13}]$ is 2 and that the only units are ± 1. Show that

$$
y+\sqrt{-13}=(a+b \sqrt{-13})^{3}
$$

for some integers a and b.
(g) Find all integer solutions of $y^{2}=x^{3}-13$.
3. Let R be a Dedekind domain and let $S \subset R$ be a subset closed under multiplication, with $0 \notin S$. Show that $S^{-1} R$ is a Dedekind domain.
4. Let R be a Dedekind domain and let P_{1}, \ldots, P_{m} be nonzero prime ideals of R. Let $S=R \backslash\left(P_{1} \cup \cdots \cup P_{m}\right)$.
(a) Show that S is a multiplicatively closed subset of R.
(b) Show that $S^{-1} R$ is a PID.
5. Let R be a Dedekind domain. Let α and β be nonzero elements of R. Show that the fraction α / β can be reduced (that is, $\alpha / \beta=a / b$ with $\operatorname{gcd}(a, b)=1)$ if and only if the ideal (α, β) is principal.
6. Let R be a Dedekind domain and let I and J be nonzero ideals of R.
(a) Show that there exists $j \in J$ such that $I+j J^{-1}=R$, hence there exist $i \in I, j \in J, k \in J^{-1}$ such that $i+j k=1$.
(b) Let M be the matrix $\left(\begin{array}{cc}i & j \\ -k & 1\end{array}\right)$ and let $N=\left(\begin{array}{cc}1 & -j \\ k & i\end{array}\right)$. Show that $(x, y) \mapsto(x, y) M$ maps $R \oplus I J$ to $I \oplus J$, and that $(x, y) \mapsto(x, y) N$ is the inverse map. Therefore, $I \oplus J \simeq R \oplus I J$ as R-modules.
(c) Show that I is a projective R-module.

