Math 620: HW #1

- 1. Let R be a Dedekind domain and let I be a nonzero ideal of R. Suppose that I^2 and I^3 are principal ideals. Show that I is principal.
- 2. Consider the equation $y^2 = x^3 13$, where x and y are integers. (a) Show that x cannot be even.
 - (b) Show that $13 \nmid y$.

(c) Let \mathfrak{p} be a prime ideal in $\mathbb{Z}[\sqrt{-13}]$ and suppose \mathfrak{p} divides both $y + \sqrt{-13}$ and $y - \sqrt{-13}$. Show that \mathfrak{p} divides either 2 or 13.

(d) Show that if \mathfrak{p} divides 2 then x is even and if \mathfrak{p} divides 13 then 13 | y.

(e) Show that $y + \sqrt{-13}$ and $y - \sqrt{-13}$ are relatively prime in $\mathbb{Z}[\sqrt{-13}]$. (f) You may assume that the class number of $\mathbb{Z}[\sqrt{-13}]$ is 2 and that the only units are ± 1 . Show that

$$y + \sqrt{-13} = (a + b\sqrt{-13})^3$$

for some integers a and b.

(g) Find all integer solutions of $y^2 = x^3 - 13$.

- 3. Let R be a Dedekind domain and let $S \subset R$ be a subset closed under multiplication, with $0 \notin S$. Show that $S^{-1}R$ is a Dedekind domain.
- 4. Let R be a Dedekind domain and let P_1, \ldots, P_m be nonzero prime ideals of R. Let $S = R \setminus (P_1 \cup \cdots \cup P_m)$.
 - (a) Show that S is a multiplicatively closed subset of R.
 - (b) Show that $S^{-1}R$ is a PID.
- 5. Let R be a Dedekind domain. Let α and β be nonzero elements of R. Show that the fraction α/β can be reduced (that is, $\alpha/\beta = a/b$ with gcd(a,b) = 1) if and only if the ideal (α,β) is principal.
- 6. Let R be a Dedekind domain and let I and J be nonzero ideals of R.
 (a) Show that there exists j ∈ J such that I + jJ⁻¹ = R, hence there exist i ∈ I, j ∈ J, k ∈ J⁻¹ such that i + jk = 1.
 - (b) Let M be the matrix $\begin{pmatrix} i & j \\ -k & 1 \end{pmatrix}$ and let $N = \begin{pmatrix} 1 & -j \\ k & i \end{pmatrix}$. Show that $(x, y) \mapsto (x, y)M$ maps $R \oplus IJ$ to $I \oplus J$, and that $(x, y) \mapsto (x, y)N$ is the inverse map. Therefore, $I \oplus J \simeq R \oplus IJ$ as R-modules. (c) Show that I is a projective R-module.