Math 620, Homework 3

1. Let $\zeta=e^{2 \pi i / 8}$ be a primitive 8 th root of unity.
(a) Show that $\sqrt{2}=\zeta+\zeta^{-1}$.
(b) Let p be an odd prime. Show that σ_{p} (the Galois element that maps ζ to
ζ^{p}) fixes $\sqrt{2}$ if and only if $p \equiv \pm 1 \bmod 8$.
(c) Show that p splits completely in $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ if and only if $p \equiv \pm 1 \bmod 8$.
(d) Prove the supplementary law for quadratic reciprocity: $\left(\frac{2}{p}\right)=1$ if and only if $p \equiv \pm 1 \bmod 8$.
2. Let L / K be an extension of number fields. Assume that $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]$ for some $\alpha \in \mathcal{O}_{L}$. Let $f(X) \in \mathcal{O}_{K}[X]$ be the minimal polynomial for α. Let \mathfrak{p} be a prime ideal of \mathcal{O}_{K} and let

$$
f(X) \equiv h_{1}(X)^{e_{1}} \cdots h_{g}(X)^{e_{g}} \quad \bmod \mathfrak{p}
$$

be the factorization of $f(X) \bmod \mathfrak{p}$ into distinct monic polynomials $h_{j}(X)$ that are irreducible $\bmod \mathfrak{p}$. Let $k=\mathcal{O}_{K} / \mathfrak{p}$. For a fixed j, let P_{j} be the kernel of the natural map

$$
\phi_{j}: \mathcal{O}_{K}[\alpha] \simeq \mathcal{O}_{K}[X] /(f(X)) \rightarrow k[X] /\left(h_{j}(X)\right)
$$

(where h_{j} is regarded as a polynomial $\bmod \mathfrak{p}$).
(a) Show that P_{j} is a prime ideal of \mathcal{O}_{L} and $\left[\mathcal{O}_{L} / P_{j}: k\right]=\operatorname{deg} h_{j}$.
(b) Show that the ideal $\left(\mathfrak{p}, h_{j}(\alpha)\right)$ of \mathcal{O}_{L} is contained in P_{j}.
(c) Show that $\left(\mathfrak{p}, h_{j}(\alpha)\right)=P_{j}$. (Hint: Suppose $a(\alpha) \in P_{j}$. Then $a(X) \equiv$ $h_{j}(X) b(X) \bmod \mathfrak{p}$ for some polynomial $b(X)$.)
(d) Show that $h_{1}(\alpha)^{e_{1}} h_{2}(\alpha)^{e_{2}} \cdots h_{g}(\alpha)^{e_{g}} \in \mathfrak{p} \mathcal{O}_{L}$.
(e) Show that $P_{j}^{e_{j}} \subseteq\left(\mathfrak{p}, h_{j}(\alpha)^{e_{j}}\right)$.
(f) Show that

$$
P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{g}^{e_{g}} \subseteq\left(\mathfrak{p}, h_{1}(\alpha)^{e_{1}} h 2(\alpha)^{e_{2}} \cdots h_{g}(\alpha)^{e_{g}}\right) \subseteq \mathfrak{p} \mathcal{O}_{L}
$$

(g) The result of (f) says that $\mathfrak{p} \mathcal{O}_{L}$ divides $P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{g}^{e_{g}}$. We also know that $f_{j}=\left[\mathcal{O}_{L} / P_{j}: k\right]=\operatorname{deg} h_{j}$ for each j, by part (a). Use the fact that $e_{1} f_{1}+\cdots+$ $e_{g} f_{g}=\operatorname{deg} f$ to show that no P_{j} can divide $\mathfrak{p} \mathcal{O}_{L}$ with an exponent higher than e_{j}, and that no other primes P of \mathcal{O}_{L} can occur in the factorization of $\mathfrak{p} \mathcal{O}_{L}$. (Note: e_{j} and f_{j} are obtained from the polynomial factorization; this shows that they are the usual e_{j} and f_{j} for the prime ideal factorization.)
(h) Technicality that might have been overlooked: Show that if $i \neq j$ then $P_{i} \neq P_{j}$. (Hint: There is a $k[X]$-linear combination of $h_{i}(X)$ and $h_{j}(X)$ that is $1 \bmod \mathfrak{p}$.
3. (a) Let $\zeta_{\mathbb{Q}(i)}(s)$ be the zeta function for $\mathbb{Q}(i)$ and let $L(s, \chi)$ be the Dirichlet L-series for the character $\chi:(Z / 4 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$, where $\chi(1)=1$ and $\chi(3)=-1$. We will show in class that $\zeta_{\mathbb{Q}(i)}(s)=\zeta(s) L(s, \chi)$ by comparing Euler factors at each prime, but we will not treat the factor for 2 . Complete the proof by showing that the Euler factors at 2 also agree.
(b) Use the fact that the series for $L(1, \chi)$ is alternating and has decreasing terms to show that $2 / 3<L(1, \chi)<1$.
(d) The class number formula tells us that $L(1, \chi)=\pi h / 4$, where h is the class number. Use the fact that h is an integer to deduce that $h=1$ and $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\pi / 4$.

