Homework 3

page 104

1. (a) Apply the Euclidean algorithm to 17 and 101:

$$
\begin{aligned}
101 & =5 \cdot 17+16 \\
17 & =1 \cdot 16+1
\end{aligned}
$$

The Extended Euclidean algorithm, yields $1=(-1) \cdot 101+6 \cdot 17$.
4. (a)

$$
\begin{aligned}
30030 & =116 \cdot 257+218 \\
257 & =1 \cdot 218+39 \\
218 & =5 \cdot 39+23 \\
39 & =1 \cdot 23+16 \\
23 & =1 \cdot 16+7 \\
16 & =2 \cdot 7+2 \\
7 & =3 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

Therefore, $\operatorname{gcd}(30030,257)=1$.
(b) If 257 is composite, it is divisible by a prime $p \leq \sqrt{257}=16.03 \ldots$ The primes satisfying this are exactly the prime factors of 30030 . Since the gcd is 1 , none of them divide 257 , so 257 is prime.
5. (a)

$$
\begin{aligned}
4883 & =1 \cdot 4369+514 \\
4369 & =8 \dot{5} 14+257 \\
514 & =2 \cdot 257+0
\end{aligned}
$$

Therefore, the gcd is 257 .
(b) We know that both numbers have 257 as a factor. This yields $4883=$ $257 \cdot 19$ and $4369=257 \cdot 17$.
12. By Fermat's theorem, $2^{100} \equiv 1(\bmod 101)$. Therefore, $2^{10203} \equiv\left(2^{100}\right)^{102} 2^{3} \equiv$ $1^{102} 2^{3} \equiv 8$. Therefore, the remainder is 8 .
page 192:

1. We have $\phi(n)=(p-1)(q-1)=100 * 112=11200$. A quick calculation shows that $3 \equiv 7467^{-1}(\bmod 11200)$. We have $5859^{3} \equiv 1415(\bmod 11413)$, so the plaintext was $1415=n o$.
2. Here, we want a number d such that $\left(m^{3}\right)^{d}(\bmod 101)=m^{3 d}=m$ (mod 101). By Fermat's Little Theorem, we need to find d such that $3 d=1$ $(\bmod 100)$. Solving, we get $d=67$ and thus decryption is accomplished by $c^{67}(\bmod 101)$.
3. Nelson decrypts $2^{e} c$ to get $2^{e d} c^{d} \equiv 2 c^{d} \equiv 2 m(\bmod n)$, and therefore sends $2 m$ to Eve. Eve divides by $2 \bmod n$ to obtain m.
4. $e=1$ means that the ciphertext is the same as the plaintext, so there is no encryption. The exponent $e=2$ does not satisfy $\operatorname{gcd}(e,(p-1)(q-1))=1$, so it is not allowed in RSA (no d will exist).
5. Since $n_{1} \neq n_{2}$, and since they are not relatively prime, we have $\operatorname{gcd}\left(n_{1}, n_{2}\right)$ must be a nontrivial common factor of n_{1} and n_{2}. Therefore, we can factor n_{1} and n_{2} and break the systems.
6. Make a list of $1^{e}, 2^{e}, \ldots, 26^{e}(\bmod n)$. For each block of ciphertext, look it up on the list and write down the corresponding letter. The message given is hello.
7. Note that $d=e$, so Alice sends $m^{e^{2}} \equiv m^{e d} \equiv m \equiv 12345$.
8. Since $e d \equiv 1(\bmod 270300)$ we have $e d=1+270300 k$ for some integer k. Then $c^{d}(\bmod 1113121) \equiv m^{e d} \equiv\left(m^{270300}\right)^{k} m=m(\bmod 1113121)$.
I.

3832920	1	0
65537	0	1
31774	1	-58
1989	-2	117
1939	31	-1813
50	-33	1930
39	1285	-75153
11	-1318	77083
6	5239	-306402
5	-6557	383485
1	11796	-689887

This tells us that $1=3832920 \cdot(11796)+65537 \cdot(-689887)$. Therefore, $(65537)^{-1} \equiv-689887 \equiv 3143033(\bmod 3832920)$, so $d=3143033$.

page 197:

1. First, we convert the two text messages to numerical values by:
```
>> text2int1('one')
ans =
    151405
>> text2int1('two')
ans =
    2 0 2 3 1 5
>> powermod(sym('151405'), sym('6551'), sym('712446816787'))
ans =
    273095689186
>> powermod(sym('202315'), sym('6551'), sym('712446816787'))
ans =
    709427776011
```

Therefore the message was "one" (as we already knew from Longfellow's poem).

