Homework 3

page 104

1. (a) Apply the Euclidean algorithm to 17 and 101:

$$101 = 5 \cdot 17 + 16$$
$$17 = 1 \cdot 16 + 1.$$

The Extended Euclidean algorithm, yields $1 = (-1) \cdot 101 + 6 \cdot 17$. 4. (a)

$$30030 = 116 \cdot 257 + 218$$

$$257 = 1 \cdot 218 + 39$$

$$218 = 5 \cdot 39 + 23$$

$$39 = 1 \cdot 23 + 16$$

$$23 = 1 \cdot 16 + 7$$

$$16 = 2 \cdot 7 + 2$$

$$7 = 3 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0.$$

Therefore, gcd(30030, 257) = 1.

(b) If 257 is composite, it is divisible by a prime $p \le \sqrt{257} = 16.03...$ The primes satisfying this are exactly the prime factors of 30030. Since the gcd is 1, none of them divide 257, so 257 is prime. **5.** (a)

$$4883 = 1 \cdot 4369 + 514$$

$$4369 = 8\dot{5}14 + 257$$

$$514 = 2 \cdot 257 + 0.$$

Therefore, the gcd is 257.

(b) We know that both numbers have 257 as a factor. This yields $4883 = 257 \cdot 19$ and $4369 = 257 \cdot 17$. **12.** By Fermat's theorem, $2^{100} \equiv 1 \pmod{101}$. Therefore, $2^{10203} \equiv (2^{100})^{102} 2^3 \equiv 2^{100}$

12. By Fermat's theorem, $2^{100} \equiv 1 \pmod{101}$. Therefore, $2^{10203} \equiv (2^{100})^{102} 2^3 \equiv 1^{102} 2^3 \equiv 8$. Therefore, the remainder is 8.

page 192:

1. We have $\phi(n) = (p-1)(q-1) = 100 * 112 = 11200$. A quick calculation shows that $3 \equiv 7467^{-1} \pmod{11200}$. We have $5859^3 \equiv 1415 \pmod{11413}$, so the plaintext was 1415 = no.

4. Here, we want a number d such that $(m^3)^d \pmod{101} = m^{3d} = m \pmod{101}$. By Fermat's Little Theorem, we need to find d such that $3d = 1 \pmod{100}$. Solving, we get d = 67 and thus decryption is accomplished by $c^{67} \pmod{101}$.

7. Nelson decrypts $2^{e}c$ to get $2^{ed}c^{d} \equiv 2c^{d} \equiv 2m \pmod{n}$, and therefore sends 2m to Eve. Eve divides by $2 \mod n$ to obtain m.

10. e = 1 means that the ciphertext is the same as the plaintext, so there is no encryption. The exponent e = 2 does not satisfy gcd(e, (p-1)(q-1)) = 1, so it is not allowed in RSA (no d will exist).

11. Since $n_1 \neq n_2$, and since they are not relatively prime, we have $gcd(n_1, n_2)$ must be a nontrivial common factor of n_1 and n_2 . Therefore, we can factor n_1 and n_2 and break the systems.

17. Make a list of $1^e, 2^e, \ldots, 26^e \pmod{n}$. For each block of ciphertext, look it up on the list and write down the corresponding letter. The message given is *hello*.

21. Note that d = e, so Alice sends $m^{e^2} \equiv m^{ed} \equiv m \equiv 12345$.

25. Since $ed \equiv 1 \pmod{270300}$ we have ed = 1 + 270300k for some integer k. Then $c^d \pmod{1113121} \equiv m^{ed} \equiv (m^{270300})^k m = m \pmod{1113121}$.

3832920	1	0
65537	0	1
31774	1	-58
1989	-2	117
1939	31	-1813
50	-33	1930
39	1285	-75153
11	-1318	77083
6	5239	-306402
5	-6557	383485
1	11796	-689887

This tells us that $1 = 3832920 \cdot (11796) + 65537 \cdot (-689887)$. Therefore, $(65537)^{-1} \equiv -689887 \equiv 3143033 \pmod{3832920}$, so d = 3143033.

page 197:

I.

1. First, we convert the two text messages to numerical values by:

```
>> text2int1('one')
ans =
    151405
>> text2int1('two')
ans =
    202315
>> powermod(sym('151405'), sym('6551'), sym('712446816787'))
ans =
    273095689186
>> powermod(sym('202315'), sym('6551'), sym('712446816787'))
ans =
    709427776011
```

Therefore the message was "one" (as we already knew from Longfellow's poem).