MATH 600: ABSTRACT ALGEBRA (L. WASHINGTON) EXAM \#1, OCTOBER 20, 1994

1. Let G be a finite group and let $g \in G$. Let $S=\left\{x g x^{-1} \mid x \in G\right\}$. Show that $|S|$ divides $|G|$.
2. Let H and K be subgroups of a group G. Let $H K=\{h k \mid h \in H, k \in K\}$. Show that $H K$ is a subgroup of G if and only if $H K=K H$.
3. Let G be a finite non-abelian simple group. Let p be a prime dividing $|G|$ and let m be the number of Sylow p-subgroups of G. Show that $|G|$ divides m !.
4. Let G be a group of order $5 \cdot 11 \cdot 17$. Suppose G contains an element of order 55 . Show that G is cyclic.
5. (a) Find all normal subgroups of $A_{5} \times \mathbb{Z} / 2 \mathbb{Z}$.
(b) Show that $S_{5} \not \equiv A_{5} \times \mathbb{Z} / 2 \mathbb{Z}$.
(c) Show that S_{5} can be expressed in the form $A_{5} \rtimes_{\phi} \mathbb{Z} / 2 \mathbb{Z}$.
