Homework \#9, Due Wednesday, Nov. 26

page 374: 6.46, 6.48, 6.49

1. Let R be a unique factorization domain.
(a) Show that every nonzero prime ideal of R contains a nonzero principal prime ideal.
(b) Let I be a nonzero principal prime ideal of R. Suppose J is a prime ideal such that $0 \subseteq J \subseteq I$. Show that either $J=0$ or $J=I$.
2. Let R be a commutative ring with 1 and suppose R has a unique maximal ideal I. Let $x \in R$. Show that $x \in I$ if and only if $1+a x$ is a unit of R for all $a \in R$.
3. Let R be a commutative ring with 1 . The ring R is said to be Artinian if every descending chain of ideals stops. That is, for each sequence

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots
$$

of ideals of R, there exists n such that $I_{n}=I_{n+1}=\cdots$.
(a) Show that if R is Artinian and I is an ideal of R, then R / I is an Artinian ring.
(b) Show that if R is an Artinian integral domain, then R is a field. (Hint: Consider the ideals $(x) \supseteq\left(x^{2}\right) \supseteq\left(x^{3}\right) \cdots$.)
(c) Show that if R is Artinian and P is a prime ideal of R, then P is a maximal ideal.
(d) Show that if P_{1}, \ldots, P_{n} are distinct prime ideals of an Artinian ring R, then there exists an element $x \in P_{1} \cap \cdots \cap P_{n-1}$ with $x \notin P_{n}$.
(e) Show that an Artinian ring has only finitely many prime ideals.
4. (a) Let R be a unique factorization domain. Suppose $a, b \in R$ are nonzero elements such that $a^{3}=b^{2}$. Show that there is an element $c \in R$ such that $a c=b$.
(b) Show that there do not exist polynomials $g(X, Y), h(X, Y) \in \mathbb{C}[X, Y]$ such that $X \cdot g(X, Y)=Y+\left(X^{3}-Y^{2}\right) \cdot h(X, Y)$.
(c) Show that $\mathbb{C}[X, Y] /\left(X^{3}-Y^{2}\right)$ is not a unique factorization domain.

