Use 5 pages. Do a separate problem on each page. Write your name on each page. Do not staple.

1. (15 points) Let M be the matrix over the complex numbers

$$
\left(\begin{array}{lll}
3 & 0 & 0 \\
a & 3 & 0 \\
b & c & 2
\end{array}\right) .
$$

Determine all possible minimal polynomials for M and give an example of values for a, b, c for each possibility.
2. (30 points $=15+15$) In this problem, all modules are \mathbb{Z}-modules. Let $n \geq 1$ be an integer. Define

$$
f: \mathbb{Z}_{n} \rightarrow \mathbb{Q} / \mathbb{Z}, \quad f(x)=\frac{x}{n} \quad \bmod \mathbb{Z}
$$

and

$$
g: \mathbb{Q} / \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}, \quad g(y)=n y
$$

Then $0 \rightarrow \mathbb{Z}_{n} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ is exact (you do not need to prove this).
(a) Let M be a \mathbb{Z}-module and let $H=\operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z})$. Use the long exact Ext sequence attached to the above exact sequence to show that

$$
\operatorname{Ext}^{1}\left(M, \mathbb{Z}_{n}\right) \simeq H / n H
$$

(b) Let M be a projective \mathbb{Z}-module. Show that $\operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z})$ is a divisible group. (Note: this can be done directly, or by using part (a).)
3. (30 points $=15+15$) (a) Let R be an integral domain and let $0 \neq r \in R$. Assume r is not a unit of R. Find an exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of R-modules (depending on r) such that the induced sequence

$$
0 \rightarrow A \otimes(R / r R) \rightarrow B \otimes(R / r R) \rightarrow C \otimes(R / r R) \rightarrow 0
$$

is not exact (where \otimes denotes \otimes_{R}).
(b) Let R be a PID and let M be a finitely generated R-module. Show that M is flat if and only if M is torsion-free (torsion-free means that whenever $0 \neq r \in R$ and $0 \neq m \in M$, then $r m \neq 0)$.
4. (10 points) Let R be a commutative ring with 1 , let I be an ideal in R, and let M be an R-module. Show that

$$
\operatorname{Hom}_{R}(R / I, M) \simeq M[I]=\{m \in M \mid i m=0 \text { for all } i \in I\}
$$

5. (15 points) Consider the following commutative diagram of modules (over some ring):

Assume the rows are exact. Show that if h_{1} and h_{3} are injective, then h_{2} is injective.

