MATH 601 (Washington) Exam 1 Solutions March 17, 2004

1. The characteristic polynomial is $(X-3)^2(X-2)$ so the minimal polynomial is either (X-3)(X-2), which happens for a = b = c = 0, or $(X-3)^2(X-2)$, which happens for a = 1, b = c = 0.

2. (a) Part of the long exact sequence is

$$\cdots \to \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z}) \to \operatorname{Hom}(M, \mathbb{Q}/\mathbb{Z}) \to \operatorname{Ext}^1(M, \mathbb{Z}_n) \to \operatorname{Ext}^1(M, \mathbb{Q}/\mathbb{Z}) \to \cdots$$

Since \mathbb{Q}/\mathbb{Z} is divisible, it is injective, so $\operatorname{Ext}^1(M, \mathbb{Q}/\mathbb{Z}) = 0$. Therefore we obtain

$$H \to H \to \operatorname{Ext}^1(M, \mathbb{Z}_n) \to 0,$$

where the map $H \to H$ is induced by g, hence is multiplication by n. This yields the result.

(b) Since M is projective, $\text{Ext}^1(M, \mathbb{Z}_n) = 0$ for all $n \ge 1$. From (b), H = nH for all such n, so H is divisible. Without using (a), we can consider $h \in H$. This yields a diagram

The definition of projective gives a map h_1 from H to the first \mathbb{Q}/\mathbb{Z} that makes the diagram commute, and it is easy to see that $nh_1 = h$. This implies divisibility.

3. (a) Consider the exact sequence $0 \to R \to R \to R/rR \to 0$, where the map $R \to R$ is multiplication by r. Tensoring with R/rR yields the sequence

$$0 \to R/rR \to R/rR \to (R/rR) \otimes (R/rR) \to 0,$$

where the map $R/rR \rightarrow R/rR$ is multiplication by r. Clearly this is not injective, so the sequence is not exact.

(b) From the structure theorem for finitely generated modules over PID's, M is isomorphic to $\mathbb{R}^n \oplus T$, where T is torsion. If M is torsion-free, then T = 0, so Mis free, hence flat. Conversely, suppose M is flat. Let $0 \neq r \in \mathbb{R}$ and consider the exact sequence in (a). Tensoring with M preserves exactness, so

$$0 \to M \otimes R \to M \otimes R \to M \otimes (R/rR) \to 0$$

is exact. But the first map is $M \to M$, given by multiplication by r. Since it is injective, and since this holds for all $r \neq 0$, there cannot be any torsion in M.

4. Let $\phi \in \operatorname{Hom}_R(R/I, M)$. Map ϕ to $\phi(1+I)$. Let $i \in I$. Since $\phi(i+I) = 0$, we have $i\phi(1+I) = \phi(i+I) = 0$. Therefore, $\phi(1+I) \in M[I]$. Since $\phi(1)$ determines ϕ , we have an injective map $\operatorname{Hom}_R(R/I, M) \to M[I]$.

 $\mathbf{2}$

Now let $m \in M[I]$. Define $\phi(r+I) = rm$. If $r_1 + I = r_2 + I$, then $r_1 - r_2 = i \in I$, so $r_1m - r_2m = im = 0$. Therefore, ϕ is well-defined, hence is in $\operatorname{Hom}_R(R/I, M)$. This shows that the map above is surjective.

5. The snake lemma yields an exact sequence

$$0 \to \operatorname{Ker}(h_1) \to \operatorname{Ker}(h_2) \to \operatorname{Ker}(h_3) \to \cdots$$

If h_1 and h_3 are injective, then we obtain

$$0 \to 0 \to \operatorname{Ker}(h_2) \to 0 \to \cdots$$
.

Therefore, $\operatorname{Ker}(h_2) = 0$.