1. The characteristic polynomial is $(X-3)^{2}(X-2)$ so the minimal polynomial is either $(X-3)(X-2)$, which happens for $a=b=c=0$, or $(X-3)^{2}(X-2)$, which happens for $a=1, b=c=0$.
2. (a) Part of the long exact sequence is

$$
\cdots \rightarrow \operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z}) \rightarrow \operatorname{Hom}(M, \mathbb{Q} / \mathbb{Z}) \rightarrow \operatorname{Ext}^{1}\left(M, \mathbb{Z}_{n}\right) \rightarrow \operatorname{Ext}^{1}(M, \mathbb{Q} / \mathbb{Z}) \rightarrow \cdots
$$

Since \mathbb{Q} / \mathbb{Z} is divisible, it is injective, so $\operatorname{Ext}^{1}(M, \mathbb{Q} / \mathbb{Z})=0$. Therefore we obtain

$$
H \rightarrow H \rightarrow \operatorname{Ext}^{1}\left(M, \mathbb{Z}_{n}\right) \rightarrow 0
$$

where the map $H \rightarrow H$ is induced by g, hence is multiplication by n. This yields the result.
(b) Since M is projective, $\operatorname{Ext}^{1}\left(M, \mathbb{Z}_{n}\right)=0$ for all $n \geq 1$. From (b), $H=n H$ for all such n, so H is divisible. Without using (a), we can consider $h \in H$. This yields a diagram

The definition of projective gives a map h_{1} from H to the first \mathbb{Q} / \mathbb{Z} that makes the diagram commute, and it is easy to see that $n h_{1}=h$. This implies divisibility.
3. (a) Consider the exact sequence $0 \rightarrow R \rightarrow R \rightarrow R / r R \rightarrow 0$, where the map $R \rightarrow R$ is multiplication by r. Tensoring with $R / r R$ yields the sequence

$$
0 \rightarrow R / r R \rightarrow R / r R \rightarrow(R / r R) \otimes(R / r R) \rightarrow 0
$$

where the map $R / r R \rightarrow R / r R$ is multiplication by r. Clearly this is not injective, so the sequence is not exact.
(b) From the structure theorem for finitely generated modules over PID's, M is isomorphic to $R^{n} \oplus T$, where T is torsion. If M is torsion-free, then $T=0$, so M is free, hence flat. Conversely, suppose M is flat. Let $0 \neq r \in R$ and consider the exact sequence in (a). Tensoring with M preserves exactness, so

$$
0 \rightarrow M \otimes R \rightarrow M \otimes R \rightarrow M \otimes(R / r R) \rightarrow 0
$$

is exact. But the first map is $M \rightarrow M$, given by multiplication by r. Since it is injective, and since this holds for all $r \neq 0$, there cannot be any torsion in M.
4. Let $\phi \in \operatorname{Hom}_{R}(R / I, M)$. Map ϕ to $\phi(1+I)$. Let $i \in I$. Since $\phi(i+I)=0$, we have $i \phi(1+I)=\phi(i+I)=0$. Therefore, $\phi(1+I) \in M[I]$. Since $\phi(1)$ determines ϕ, we have an injective map $\operatorname{Hom}_{R}(R / I, M) \rightarrow M[I]$.

Now let $m \in M[I]$. Define $\phi(r+I)=r m$. If $r_{1}+I=r_{2}+I$, then $r_{1}-r_{2}=i \in I$, so $r_{1} m-r_{2} m=i m=0$. Therefore, ϕ is well-defined, hence is in $\operatorname{Hom}_{R}(R / I, M)$. This shows that the map above is surjective.
5. The snake lemma yields an exact sequence

$$
0 \rightarrow \operatorname{Ker}\left(h_{1}\right) \rightarrow \operatorname{Ker}\left(h_{2}\right) \rightarrow \operatorname{Ker}\left(h_{3}\right) \rightarrow \cdots
$$

If h_{1} and h_{3} are injective, then we obtain

$$
0 \rightarrow 0 \rightarrow \operatorname{Ker}\left(h_{2}\right) \rightarrow 0 \rightarrow \cdots
$$

Therefore, $\operatorname{Ker}\left(h_{2}\right)=0$.

