Homework \#10

1. Let G be a finite group and let $\rho: G \rightarrow G L_{n}(\mathbb{C})$ be an irreducible representation. Suppose ρ is injective. Show that the center of G is cyclic. (Hint: What do you know about finite subgroups of the multiplicative group of a field?)
2. Let G be a group and suppose there exists a subgroup $A \subseteq G$ with $[G: A]=d$. Let $\rho: G \rightarrow G L(V)$ be a representation of G. Restrict ρ to A and decompose this representation of A into irreducible representations. Let $\phi: A \rightarrow G L(W)$ be one of these irreducible representations of A.
(a) Let g_{1}, \ldots, g_{d} be left coset representatives for A in G, so $G=\cup g_{i} A$. Let

$$
V_{1}=g_{1} W+g_{2} W+\cdots+g_{d} W \subseteq V
$$

Show that $\rho(G)$ maps V_{1} into itself, so V_{1} gives a subrepresentation V.
(b) Suppose ρ is irreducible. Show that $V_{1}=V$.
(c) Suppose A is abelian. Show that every irreducible representation of G has dimension less than or equal to d.
(d) Let D be a dihedral group D_{n}. Show that every irreducible representation of D has dimension at most 2 .
3. Find the character table of the quaternion group Q_{8}.
4. Let $\rho: G \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ be a two-dimensional complex repre sentation of the finite group G. Let V be the 4 -dimensional vector space of 2×2 complex matrices, and let G act on V by

$$
\tilde{\rho}(g)(M)=\rho(g) M \rho(g)^{-1}
$$

for $M \in V$.
(a) Show that if ρ is irreducible then $\tilde{\rho}$ contains the trivial representation exactly once.
(b) Show that if ρ is the sum of two distinct one-dimensional representations, then $\tilde{\rho}$ contains the trivial representation exactly twice.
(c) Show that if ρ is the sum of two equal one-dimensional representations, then $\tilde{\rho}$ equals the sum of four copies of the trivia l representation.
5. Let G be a finite group and let H be a normal subgroup. Let $R=\mathbb{C}[G / H]$ be the group ring of G / H with complex coefficients. Then R is a complex vector space. For $\sigma \in G$, let T_{σ} be the linear transformation of R given by multiplication on the left by σ (so $\left.T_{\sigma}(g H)=\sigma g H\right)$. Define a representation ρ of G by $\rho(\sigma)=T_{\sigma}$. (a) Let χ be the character of ρ. Show that $\chi(\sigma)=|G| /|H|$ if $\sigma \in H$ and $\chi(\sigma)=0$ if $\sigma \notin H$.
(b) Show that ρ is irreducible if and only if $H=G$.
6. (a) Let G be a finite nonabelian simple group (that is, G has no nontrivial normal subgroups). Let $\rho: G \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ be a two-dimensional representation of G. Show that ρ is either irreducible or trivial.
(b) It is known that the only finite subgroups of $\mathrm{GL}_{2}(\mathbb{C}) / \mathbb{C}^{*}$ (where \mathbb{C}^{*} denotes the multiplicative group of nonzero scalar multiples of the identity) are isomorphic to subgroups of one of the following: D_{n}, A_{5}, S_{4} (where D_{n} is the nth dihedral group, S_{n} is the group of permutations of n objects, and A_{n} is the subgroup of even permutations). Use this fact to prove that if G is a nonabelian finite simple group with a nontrivial two-dimensional representation over \mathbb{C}, then $G=A_{5}$. (Note: You do not need to prove that A_{5} has such a representation.)

