Answers to HW 10

1. Let g be in the center of G. Then $\rho(g)$ commutes with all the matrices in $\rho(G)$. Since ρ is irreducible, Schur's Lemma implies that $\rho(g)$ is a scalar matrix $\lambda_{g} I$. The $\operatorname{map} \phi: g \mapsto \lambda_{g}$ is a homomorphism from the center of G to \mathbb{C}^{\times}. Since ρ is injective, so is ϕ. Therefore, G is isomorphic to $\rho(G)$, which is a finite multiplicative subgroup of \mathbb{C}^{\times}, hence cyclic.
2. (a) Let $g \in G$. Then $g g_{i}=g_{j} a$ for some $a \in A$. Therefore $\rho(g) \rho\left(g_{i}\right) W=$ $\rho\left(g_{j}\right) \rho(a) W=\rho\left(g_{j}\right) W$, since A is invarinat under $\rho(A)$. Therefore, $\rho(g)$ maps each $g_{i} W$ into V_{1}, so $\rho(g) V_{1} \subseteq V_{1}$.
(b) This follows immediately from (a) and the definition of irreducibility.
(c) If A is abelian, then W is one-dimensional. Therefore, V_{1} has dimension at most d.
(d) D_{n} contains a cyclic subgroup of index 2 . Take A to be this cyclic subgroup and $d=2$.
3. The commutator subgroup of Q_{8} is $\{ \pm 1\}$. The quotient $Q_{8} /\{ \pm 1\}$ is the Klein 4-group, so the four one-dimensional representations of the Klein 4-group give us the 4 one-dimensional representation of Q_{8}. Since $8=\sum n_{i}^{2}$, there can be only one 2 -dimesnional representation. The character table is

1		$\{-1\}$	$\{ \pm i\}$	$\{ \pm j\}$	$\{ \pm k\}$
χ_{1}	1	1	1	1	1
χ_{2}	1	1	-1	-1	1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	1	-1	-1
χ_{5}	2	-2	0	0	0

The entries for χ_{5} are determined from the orthogonality of the columns.
4. (a) If M is fixed by $\tilde{\rho}$, then M commutes with $\rho(G)$. By Schur's Lemma, M is scalar. Conversely, the scalar matrics are clearly fixed by $\tilde{\rho}$. The trivial representation is given exactly by the set of fixed elements in V. Since the scalar matrices are a one-dimensional subspace, the trivial representation occurs once.
(b) We have $\mathbb{C}^{2}=V_{1} \oplus V_{2}$, where each V_{i} is a one-dimensional representation of G. Use a basis for \mathbb{C}^{2} formed from a basis of V_{1} and a basis of V_{2}. Then all of the matrices in $\rho(G)$ are diagonal. If $\rho_{1} \not \nsim \rho_{2}$, then there exists some matrix $\rho(g)=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$ with $\alpha \neq \beta$. Suppose $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is fixed by $\tilde{\rho}(g)$. Then

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) x=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

This yields $b \alpha=b \beta$ and $c \alpha=c \beta$. Since $\alpha \neq \beta$, we have $b=c=0$, so M is diagonal. The diagonal matrices are clearly fixed by conjugation by the diagonal matrices in $\rho(G)$, so the fixed elements are exactly the two dimensional space of diagonal matrices in V. Therefore, the trivial representation occurs twice. Explicitly, let W_{1} be the matrices that have 0's everywhere except possibly in the upper left corner. Let V_{2} be the matrices that have 0's everywhere except possibly in the lower right corner. Then $W_{1} \oplus W_{2}$ is the sum of two trivial representations occurring in V.
(c) If ρ is the sum of two equal one-dimensional representations, then the reasoning in (b) shows that each matrix $\rho(g)$ is scalar. Therefore, $\tilde{\rho}(g)$ acts trivially on V, so V is the sum of only trivial representations. There must be 4 of them since V has dimension 4.
5. (a) The cosets $g_{1} H, \ldots, g_{n} H$ give a basis for $\mathbb{C}[G / H]$ as a vector space. If $\sigma \in G$, then multiplication by σ permutes these basis elements. The trace of T_{σ} is the number of basis elements that are mapped to themselves by σ. We have $\sigma g H=g H$ if and only if $\sigma H g H=g H$, which happens if and only if $\sigma H=H$. Therefore, if $\sigma \in H$, then T_{σ} is the identity and $\chi(\sigma)=[G: H]$, which is the dimension of the space. If $\sigma \notin H$, then the matrix for T_{σ} has only 0 's on the diagonal, so $\chi(\sigma)=0$.
(b) $(\chi, \chi)=|G|^{-1} \sum_{g \in G} \chi(g) \overline{\chi(g)}=|G|^{-1} \sum_{\sigma \in H}[G: H]^{2}=|G| /|H|$. Therefore, χ is irreducible $\Longleftrightarrow(\chi, \chi)=1 \Longleftrightarrow|G|=|H|$.
6. (a) If ρ is not irreducible, it is the sum of two one-dimensional representations. But a one-dimensional representation of G has G^{c} in its kernel. Since G is nonabelian and simple, $G^{c}=G$, so the trivial representation is the only onedimensional representation. Therefore, if ρ is not irreducible, it is the sum of two trivial representations, which means $\rho(g)=I$ for all $g \in G$.
. (b) Consider the image of G in $\mathrm{GL}_{2}(\mathbb{C}) / \mathbb{C}^{*}$. Since G has no nontrivial normal subgroups, the image is either trivial or isomorphic to G. If the image is trivial, then $\rho(G)$ is contained in the scalar matrices, which means that ρ is the direct sum of two one-dimensional representations, contradicting the assumption that ρ is irreducible. Therefore, the image is isomorphic to G. Among the groups D_{n}, A_{5}, S_{4}, only A_{5} has a simple nonabelian subgroup, namely A_{5}. Therefore, $G=A_{5}$.

