Homework \#4

1. (a) Suppose that $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \cdots \rightarrow A_{n} \rightarrow 0$ is an exact sequence of modules, where the map $A_{1} \rightarrow A_{2}$ is regarded as an inclusion. Show that there is an exact sequence $0 \rightarrow A_{2} / A_{1} \rightarrow A_{3} \rightarrow \cdots \rightarrow A_{n} \rightarrow 0$.
(b) Suppose $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \cdots \rightarrow A_{n} \rightarrow 0$ is an exact sequence of finite abelian groups. Show that $\prod_{i=1}^{n}\left|A_{i}\right|^{(-1)^{i}}=1$ (Remark: abelian is not needed).
(c) Suppose $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \cdots \rightarrow A_{n} \rightarrow 0$ is an exact sequence of finite-dimensional vector spaces. Show that $\sum_{i=1}^{n}(-1)^{i} \operatorname{dim} A_{i}=0$.
2. Let A be an R-module and let $f: A \rightarrow A$ be a module homomorphism. If both $\operatorname{Ker} f$ and $\operatorname{Coker} f$ are finite, define $Q(A)=|\operatorname{Ker} f| /|\operatorname{Coker} f|$.
(a) Suppose $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact and $f: B \rightarrow B$ is such that $f(A) \subseteq A$. Show that f induces a well-defined map $C \rightarrow C$ (which we'll call f). Also show that $Q(A) Q(C)=Q(B)$ in the sense that if two of $Q(A), Q(B), Q(C)$ are defined, then so is the third and we have equality (Hint: Apply the Snake Lemma to two copies of $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$).
(b) Show that if A is finite then $Q(A)=1$ (Hint: An R-module is automatically an abelian group, so Problem 1(b) applies).
3. (a) Show that if $\operatorname{Ext}^{1}(M, N)=0$ for all modules N then M is projective. (Hint: use the long exact sequence plus an equivalent formulation of projective)
(b) Show that if $\operatorname{Ext}^{1}(M, N)=0$ for all modules M then N is injective.
4. (the Five Lemma) Consider the following commutative diagram of modules (over some ring) with exact rows:

(a) If h_{2} and h_{4} are surjective and h_{5} is injective, prove that h_{3} is surjective.
(b) If h_{2} and h_{4} are injective and h_{1} is surjective, prove that h_{3} is injective.
(c) If $h_{1}, h_{2}, h_{4}, h_{5}$ are isomorphisms, show that h_{3} is an isomorphism.
5. Let M be a module over a ring R, and let $r \in R$. Let $h: M \rightarrow M$ be an R-module homomorphism. Let h_{1} denote h restricted to $r M$ and let h_{3} denote the map on $M / r M$ induced by h. Consider the following commutative diagram:

Assume that Ker h and Coker h are finite.
(a) Show that \mid Ker $h_{1}|\leq|$ Ker $h \mid$.
(b) Show that \mid Coker $h_{3}|\leq|$ Coker $h \mid$.
(c) Show that \mid Coker $h_{1}|\leq|$ Coker $h \mid$. (Hint: How do you get coset representatives for $r M / h_{1}(r M)$?)
(d) Show that \mid Ker $h_{3}|\leq|\operatorname{Ker} h| \cdot|$ Coker $h \mid$.

