Homework #4

1. (a) Suppose that $0 \to A_1 \to A_2 \to A_3 \to \cdots \to A_n \to 0$ is an exact sequence of modules, where the map $A_1 \to A_2$ is regarded as an inclusion. Show that there is an exact sequence $0 \to A_2/A_1 \to A_3 \to \cdots \to A_n \to 0$.

(b) Suppose $0 \to A_1 \to A_2 \to A_3 \to \cdots \to A_n \to 0$ is an exact sequence of finite abelian groups. Show that $\prod_{i=1}^{n} |A_i|^{(-1)^i} = 1$ (*Remark:* abelian is not needed).

(c) Suppose $0 \to A_1 \to A_2 \to A_3 \to \cdots \to A_n \to 0$ is an exact sequence of finite-dimensional vector spaces. Show that $\sum_{i=1}^{n} (-1)^i \dim A_i = 0$.

2. Let A be an R-module and let $f : A \to A$ be a module homomorphism. If both Kerf and Cokerf are finite, define Q(A) = |Ker f|/|Coker f|.

(a) Suppose $0 \to A \to B \to C \to 0$ is exact and $f: B \to B$ is such that $f(A) \subseteq A$. Show that f induces a well-defined map $C \to C$ (which we'll call f). Also show that Q(A)Q(C) = Q(B) in the sense that if two of Q(A), Q(B), Q(C) are defined, then so is the third and we have equality (*Hint:* Apply the Snake Lemma to two copies of $0 \to A \to B \to C \to 0$).

(b) Show that if A is finite then Q(A) = 1 (*Hint:* An R-module is automatically an abelian group, so Problem 1(b) applies).

3. (a) Show that if $\text{Ext}^1(M, N) = 0$ for all modules N then M is projective. (*Hint:* use the long exact sequence plus an equivalent formulation of projective) (b) Show that if $\text{Ext}^1(M, N) = 0$ for all modules M then N is injective.

4. (the *Five Lemma*) Consider the following commutative diagram of modules (over some ring) with exact rows:

(a) If h_2 and h_4 are surjective and h_5 is injective, prove that h_3 is surjective. (b) If h_2 and h_4 are injective and h_1 is surjective, prove that h_3 is injective. (c) If h_1, h_2, h_4, h_5 are isomorphisms, show that h_3 is an isomorphism.

5. Let M be a module over a ring R, and let $r \in R$. Let $h : M \to M$ be an R-module homomorphism. Let h_1 denote h restricted to rM and let h_3 denote the map on M/rM induced by h. Consider the following commutative diagram:

Assume that Ker h and Coker h are finite.

(a) Show that $|\text{Ker } h_1| \leq |\text{Ker } h|$.

(b) Show that $|\text{Coker } h_3| \leq |\text{Coker } h|$.

(c) Show that $|\text{Coker } h_1| \leq |\text{Coker } h|$. (*Hint:* How do you get coset representatives for $rM/h_1(rM)$?)

(d) Show that $|\text{Ker } h_3| \leq |\text{Ker } h| \cdot |\text{Coker } h|$.