Homework \#6

Throughout the following, q is a power of the prime number p, \mathbb{F}_{q} denotes a field with q elements, and $\overline{\mathbb{F}}_{q}$ is an algebraic closure of \mathbb{F}_{q}.

1. (a) Let $1 \leq j \leq p-1$. Show that p divides the binomial coefficient $\binom{p}{j}$, and therefore $\binom{p}{j}=0$ in \mathbb{F}_{q}.
(b) Show that if $x, y \in \overline{\mathbb{F}}_{q}$ and $n \geq 1$, then $(x+y)^{q^{n}}=x^{q^{n}}+y^{q^{n}}$.
2. Show that the polynomial $X^{q^{n}}-X$ has q^{n} distinct roots in $\overline{\mathbb{F}}_{q}$.
3. Show that $\left\{x \in \overline{\mathbb{F}}_{q} \mid x^{q^{n}}=x\right\}$ is a field with q^{n} elements.
4. (a) Let $F \subset \overline{\mathbb{F}}_{q}$ be a field with q^{n} elements and let F^{\times}denote the nonzero elements of F. Show that $x^{q^{n}-1}=1$ for all $x \in F^{\times}$.
(b) Show that $F \subseteq\left\{x \in \overline{\mathbb{F}}_{q} \mid x^{q^{n}}=x\right\}$, hence these sets are equal since they have the same cardinality.
(c) Show that for each $n \geq 1$, there is exactly one subfield of $\overline{\mathbb{F}}_{q}$ with q^{n} elements. We'll denote it by $\mathbb{F}_{q^{n}}$.
5. (a) $\mathbb{F}_{q^{n}}^{\times}$is cyclic. Why?
(b) Show that there exists $\alpha \in \mathbb{F}_{q^{n}}$ such that $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\alpha)$. (This is a special case of the Primitive Element Theorem.)
(c) Let $n \geq 1$. Show that there is an irreducible polynomial $f(X) \in \mathbb{F}_{q}[X]$ of degree n.
6. (a) Let σ be a field automorphism of $\overline{\mathbb{F}}_{q}$. Show that $\sigma\left(\mathbb{F}_{q^{n}}\right)=\mathbb{F}_{q^{n}}$. (Hint: use problem 3.) (This part says that the extension $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$ is normal.)
(b) Let $\phi(x)=x^{q}$ for all $x \in \mathbb{F}_{q^{n}}$. Show that ϕ is a field automorphism of $\mathbb{F}_{q^{n}}$. (Remark: ϕ is called the Frobenius map.)
(c) Show that ϕ has order n in the group of automorphisms of $\mathbb{F}_{q^{n}}$.
(d) Let $d \mid n$. Show that $x \in \mathbb{F}_{q^{d}}$ if and only if $\phi^{d}(x)=x$. (This is a special case of the Galois correspondence between subfields and subgroups, since ϕ^{d} fixes x if and only if the subgroup generated by ϕ^{d} fixes x.)
