Homework \#6

p. 197: 3.93, 3.94
p. 246: 4.21(i)

1. Let $K \subseteq L$ be fields. A subset S of L is called algebraically dependent over K if there exists a nonconstant polynomial $f\left(X_{1}, \ldots, X_{n}\right) \in K\left[X_{1}, \ldots, X_{n}\right]$ for some $n \geq 1$ and distinct elements $s_{1}, \ldots, s_{n} \in S$ such that $f\left(s_{1}, \ldots, s_{n}\right)=0$. The set S is called algebraically independent over K if it is not algebraically dependent.
(a) Show that there exists a maximal algebraically independent (over K) set S contained in L.
(b) Show that the extension $L / K(S)$ is algebraic.
(Remark: Such a set S is called a transcendence basis for L / K. It can be shown that any two transcendence bases for L / K have the same cardinality.)
2. Let S be a transcendence basis for \mathbb{C} / \mathbb{Q}.
(a) Show that S is infinite (you may use the fact that an algebraic extension of an infinite field has the same cardinality as the field).
(b) Let π be a permutation of S. Show that there is an automorphism σ of \mathbb{C} that gives the permutation π on S. Conclude that \mathbb{C} has infinitely many automorphisms.
3. Let L be a field and let \mathbb{Q} or $\mathbb{F}_{p}(p=$ prime $)$ be the prime field contained in L. Let σ be an automorphism of L. Show that σ gives the identity map on the prime field. Conclude that the only automorphisms of \mathbb{Q} and of \mathbb{F}_{p} are trivial.
4. Let σ be an automorphism of \mathbb{R}.
(a) Show that σ maps positive reals to positive reals (Hint: positive reals are squares).
(b) Show that if $a>b$ then $\sigma(a)>\sigma(b)$.
(c) Show that σ is the identity map on \mathbb{R} (problem 3 is useful here).
5. Let L / K be an extension of degree 2 . Show that L / K is normal.
6. Let p be a prime and let ζ be a primitive p th root of unity.
(a) Show that the irreducible polynomial for ζ over \mathbb{Q} is

$$
\Phi(X)=X^{p-1}+X^{p-2}+\cdots+X+1=\left(X^{p}-1\right) /(X-1)
$$

(b) Show that $\mathbb{Q}(\zeta)$ is the splitting field for $\Phi(X)$.
(c) Let σ be an automorphism of $\mathbb{Q}(\zeta)$. Show that $\sigma(\zeta)=\zeta^{r}$ for some integer $r \not \equiv 0$ $(\bmod p)$, and that $r \bmod p$ determines σ.
(d) Show that map $\sigma \mapsto c \in \mathbb{Z}_{p}^{\times}$in part (c) is an injective group homomorphism from $\operatorname{Aut}(\mathbb{Q}(\zeta))$ to \mathbb{Z}_{p}^{\times}.
(e) Using the fact that $\mathbb{Q}(\zeta) / \mathbb{Q}$ is a separable and normal extension, show that $\operatorname{Aut}(\mathbb{Q}(\zeta))$ has order $p-1$, hence is isomorphic to \mathbb{Z}_{p}^{\times}.

