Homework \#8

1. Let ζ be a primitive 7 -th root of unity. Determine how many fields F satisfy $\mathbb{Q} \subseteq F \subseteq \mathbb{Q}(\zeta)$, and for each such F determine $[F: \mathbb{Q}]$.
2. (a) Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q} and let $f(X) \in \mathbb{Q}[X]$ be the irreducible polynomial of α. The roots $\alpha_{1}, \ldots, \alpha_{m}$ (including α) of $f(X)$ are called the conjugates of α. Let $\beta \in \mathbb{C}$ also be algebraic over \mathbb{Q} and let $\beta_{1}, \ldots, \beta_{n}$ be the conjugates of β. Let

$$
g(X)=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(X-\alpha_{i}-\beta_{j}\right)
$$

Show that $g(X) \in \mathbb{Q}[X]$.
(b) Find a polynomial in $\mathbb{Q}[X]$ that has $\sqrt{2}+\sqrt{3}$ as a root.
3. Let L / K be a Galois extension with Galois group isomorphic to the quaternion group $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$.
(a) Show that if $K \subseteq F \subseteq L$ then F / K is normal. (Hint: Figure out what property Q_{8} must have, then prove it.)
(b) Let $f(X) \in K[X]$ be irreducible and have splitting field L. Show that f must have degree 8. (Hint: Apply (a) to $K(\alpha)$ for a root α of f, then use one of the equivalent definitions of normality.)
4. Let K be a field of characteristic 0 such that every odd degree polynomial in $K[X]$ has a root in K (for example, $K=\mathbb{R}$). Let L / K be a Galois extension and let $G=\operatorname{Gal}(L / K)$.
(a) Show that K has no nontrivial extensions of odd degree (you need a certain theorem here to make the transition from polynomials to fields; state what it is).
(b) Show that $[L: K]$ is a power of 2. (Hint: Look at the fixed field of the 2-Sylow subgroup of G.)
(c) Show that if $[L: K]>2$ then there is a Galois subextension F / K with $\operatorname{Gal}(F / K)$ of order 4. (You may use the fact that in a group of order p^{n} for some prime p, there is a normal subgroup of order p^{j} for all $j \leq n$.)
(d) Let M / K be a Galois extension and let i be a square root of -1 in \bar{K}. Show that $M(i) / K$ is normal (any of the equivalent definitions of normality works here). Since we are in characteristic 0 , this means that $M(i) / K$ is Galois.
5. Let's apply problem 4 to $K=\mathbb{R}$. Don't assume that \mathbb{C} is algebraically closed.
(a) Show that \mathbb{C} is the only quadratic extension of \mathbb{R}. (Hint: if $d \in \mathbb{R}$ then either d or $-d$ is a square.)
(b) Let M / \mathbb{R} be a Galois extension. Show that if $[M(i): \mathbb{R}]>2$ then $M(i)$ contains a quadratic extension of \mathbb{C}. (You need problems $4(\mathrm{c})$ and 5 (a) plus some very elementary group theory.)
(c) Show that \mathbb{C} has no quadratic extensions. (Hint: If $a, b \in \mathbb{R}$, and

$$
x^{2}=\frac{1}{2}\left(\sqrt{a^{2}+b^{2}}+a\right), \quad y^{2}=\frac{1}{2}\left(\sqrt{a^{2}+b^{2}}-a\right)
$$

then $x, y \in \mathbb{R}$ and (with appropriate signs of x, y) we have $(x+y i)^{2}=a+b i$.)
(d) Use (b) and (c) to show that if M / \mathbb{R} is a Galois extension, then $M \subseteq \mathbb{C}$.
(e) Let $f(X) \in \mathbb{C}[X]$. Show that the splitting field of $f(X) \bar{f}(X) \in \mathbb{R}[X]$ is contained in \mathbb{C}. Conclude that \mathbb{C} is algebraically closed.

