Homework #8

1. Let ζ be a primitive 7-th root of unity. Determine how many fields F satisfy $\mathbb{Q} \subseteq F \subseteq \mathbb{Q}(\zeta)$, and for each such F determine $[F : \mathbb{Q}]$.

2. (a) Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q} and let $f(X) \in \mathbb{Q}[X]$ be the irreducible polynomial of α . The roots $\alpha_1, \ldots, \alpha_m$ (including α) of f(X) are called the *conjugates* of α . Let $\beta \in \mathbb{C}$ also be algebraic over \mathbb{Q} and let β_1, \ldots, β_n be the conjugates of β . Let

$$g(X) = \prod_{i=1}^{m} \prod_{j=1}^{n} (X - \alpha_i - \beta_j).$$

Show that $g(X) \in \mathbb{Q}[X]$.

(b) Find a polynomial in $\mathbb{Q}[X]$ that has $\sqrt{2} + \sqrt{3}$ as a root.

3. Let L/K be a Galois extension with Galois group isomorphic to the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$.

(a) Show that if $K \subseteq F \subseteq L$ then F/K is normal. (*Hint:* Figure out what property Q_8 must have, then prove it.)

(b) Let $f(X) \in K[X]$ be irreducible and have splitting field L. Show that f must have degree 8. (*Hint:* Apply (a) to $K(\alpha)$ for a root α of f, then use one of the equivalent definitions of normality.)

4. Let K be a field of characteristic 0 such that every odd degree polynomial in K[X] has a root in K (for example, $K = \mathbb{R}$). Let L/K be a Galois extension and let G = Gal(L/K).

(a) Show that K has no nontrivial extensions of odd degree (you need a certain theorem here to make the transition from polynomials to fields; state what it is).

(b) Show that [L:K] is a power of 2. (*Hint:* Look at the fixed field of the 2-Sylow subgroup of G.)

(c) Show that if [L:K] > 2 then there is a Galois subextension F/K with $\operatorname{Gal}(F/K)$ of order 4. (You may use the fact that in a group of order p^n for some prime p, there is a normal subgroup of order p^j for all $j \leq n$.)

(d) Let M/K be a Galois extension and let *i* be a square root of -1 in \overline{K} . Show that M(i)/K is normal (any of the equivalent definitions of normality works here). Since we are in characteristic 0, this means that M(i)/K is Galois.

5. Let's apply problem 4 to $K = \mathbb{R}$. Don't assume that \mathbb{C} is algebraically closed. (a) Show that \mathbb{C} is the only quadratic extension of \mathbb{R} . (*Hint:* if $d \in \mathbb{R}$ then either d or -d is a square.)

(b) Let M/\mathbb{R} be a Galois extension. Show that if $[M(i) : \mathbb{R}] > 2$ then M(i) contains a quadratic extension of \mathbb{C} . (You need problems 4(c) and 5(a) plus some very elementary group theory.)

(c) Show that \mathbb{C} has no quadratic extensions. (*Hint:* If $a, b \in \mathbb{R}$, and

$$x^{2} = \frac{1}{2}(\sqrt{a^{2} + b^{2}} + a), \qquad y^{2} = \frac{1}{2}(\sqrt{a^{2} + b^{2}} - a),$$

then $x, y \in \mathbb{R}$ and (with appropriate signs of x, y) we have $(x + yi)^2 = a + bi$.) (d) Use (b) and (c) to show that if M/\mathbb{R} is a Galois extension, then $M \subseteq \mathbb{C}$. (e) Let $f(X) \in \mathbb{C}[X]$. Show that the splitting field of $f(X)\overline{f}(X) \in \mathbb{R}[X]$ is contained in \mathbb{C} . Conclude that \mathbb{C} is algebraically closed.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!\mathrm{E}}\!X$