MATH 601, SAMPLE PROBLEMS

1. Let $L = \mathbb{Q}(i, 2^{1/4})$. (a) Prove that L/\mathbb{Q} is Galois with $[L : \mathbb{Q}] = 8$. (b) Determine generators and relations for $\operatorname{Gal}(L/\mathbb{Q})$. (c) Find all fields F with $\mathbb{Q}(i) \subseteq F \subseteq L$.

2. (a) Let L/K be a finite Galois extension of fields with $\operatorname{Gal}(L/K)$ abelian. Let F be a field with $K \subseteq F \subseteq L$. Show that F/K is a Galois extension.

(b) Let $f(X) \in K[X]$ be an irreducible polynomial whose splitting field has abelian Galois group. Let α be a root of f(X). Show that $K(\alpha)$ contains all roots of f(X).

3. (a) Let L and L' be subfields of \mathbb{Q} such that $L' \not\subseteq L$. Show that there is an automorphism τ of $\overline{\mathbb{Q}}$ such that $\tau|_L = \operatorname{id} \operatorname{but} \tau|_{L'} \neq \operatorname{id}$.

(b) Suppose L/\mathbb{Q} is a normal extension. Let σ be an automorphism of $\overline{\mathbb{Q}}$ and let τ be an automorphism of $\overline{\mathbb{Q}}$ such that $\tau|_L = \text{id}$. Show that $(\sigma^{-1}\tau\sigma)|_L = \text{id}$.

(c) Suppose that L/\mathbb{Q} is not normal. Show that there exist automorphisms τ and σ of $\overline{\mathbb{Q}}$ such that $\tau|_L = \mathrm{id}$ but $(\sigma^{-1}\tau\sigma)|_L \neq \mathrm{id}$.

4. Let f(x) be an irreducible polynomial of degree n over a field F. Let g(x) be any polynomial in F[x]. Prove that every irreducible factor of the polynomial f(g(x)) has degree divisible by n.

5. Determine the splitting field F over \mathbb{Q} of $X^4 + X^2 + 1$. (b) Describe $\operatorname{Gal}(F/\mathbb{Q})$.

6. Let L/\mathbb{Q} be a finite Galois extension of odd degree. Show that $L \subset \mathbb{R}$ (more precisely, any embedding of L into \mathbb{C} has image in \mathbb{R} .

7. Find all irreducible polynomials of degrees 1, 2, 4 over \mathbb{F}_2 and prove that their product is $X^{16} - X$.