Math 620, Homework 2

1. Let K be a number field of degree n over \mathbb{Q}. The Minkowski bound says that each ideal class of \mathcal{O}_{K} contains an ideal of norm at most

$$
\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}} \sqrt{|D|},
$$

where D is the discriminant of K and r_{2} is the number of pairs of complex embeddings $K \rightarrow \mathbb{C}$.
(a) Find all integral ideals of $\mathbb{Q}(\sqrt{5})$ of norm less than the Minkowski bound and show that all of them are principal. Conclude that the class number of $\mathbb{Q}(\sqrt{5})$ is 1 .
(b) Find all integral ideals of $\mathbb{Q}(\sqrt{-13})$ of norm less than the Minkowski bound. Show that the class number of $\mathbb{Q}(\sqrt{-13})$ is 2 .
(c) Every number field has the trivial ideal class and the smallest norm of an ideal in that class is 1 , so the Minkowski bound must be at least 1. Use this to show that $\left|D_{K}\right|>1$ if $K \neq \mathbb{Q}$.
2. Let K / \mathbb{Q} be a Galois extension with abelian Galois group. Let $\alpha \in K$ be such that $|\sigma(\alpha)|^{2}=r$ for some embedding $\sigma: K \rightarrow \mathbb{C}$, where $r \in \mathbb{Q}$. Show that $|\sigma(\alpha)|^{2}=r$ for all embeddings $\sigma: K \rightarrow \mathbb{C}$.
3. Let $A B C \cdots X Y Z$ be a closed polygon in the plane (not necessarily with 26 sides) such that every side has length 1 . Suppose that the angles $A B C$, $B C D, C D E, \ldots, X Y Z$ are rational multiples of π. Show that angles $Y Z A$ and $Z A B$ are also rational multiples of π.
4. (a) Let

$$
f(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in \mathbb{Z}[X]
$$

be an Eisenstein polynomial for the prime p, so $p \mid a_{i}$ for all i and $p^{2} \nmid a_{0}$. Let α be a root of $f(X)$ and let $K=\mathbb{Q}(\alpha)$. Show that there is a prime ideal P of \mathcal{O}_{K} dividing P such that $\alpha \in P$.
(b) Let f and P be as in (a). Show that $v_{P}(\alpha)=v_{P}(p) / n$.
(c) Use (b) to show that $[\mathbb{Q}(\alpha): \mathbb{Q}] \geq n$, hence $=n$ (Hint: Relate $v_{P}(p)$ to a ramification index). Conclude that $f(X)$ is irreducible.

