
1 Sage

Sage is an open source computer algebra package. It can be downloaded for
free from www.sagemath.org/ or it can be accessed directly online at the website
https://sagecell.sagemath.org/. The computer computations in this book
can be done in Sage, especially by those comfortable with programming in
python. In the following, we give examples of how to do some of the basic
computations. Much more is possible. See www.sagemath.org/ or search the
Web for other examples. Another good place to start learning Sage in general
is [Bard] (there is a free online version).

Shift ciphers.
Suppose you want to encrypt the plaintext This is the plaintext with a

shift of 3. We first encode it as an alphabetic string of capital letters with the
spaces removed. Then we shift each letter by 3 positions:

S=ShiftCryptosystem(AlphabeticStrings())

P=S.encoding("This is the plaintext")

C=S.enciphering(3,P);C

When this is evaluated, we obtain the ciphertext

WKLVLVWKHSODLQWHAW

To decrypt, we can shift by 23 or do the following:

S.deciphering(3,C)

When this is evaluated, we obtain

THISISTHEPLAINTEXT

Suppose we don’t know the key and we want to decrypt by trying all possible
shifts:

S.brute force(C)

Evaluation yields

0: WKLVLVWKHSODLQWHAW,

1: VJKUKUVJGRNCKPVGZV,

2: UIJTJTUIFQMBJOUFYU,

3: THISISTHEPLAINTEXT,

4: SGHRHRSGDOKZHMSDWS,

5: RFGQGQRFCNJYGLRCVR,

6: etc.

24: YMNXNXYMJUQFNSYJCY,

25: XLMWMWXLITPEMRXIBX

Affine ciphers.

Let’s encrypt the plaintext This is the plaintext using the affine function
3x + 1 mod 26:
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A=AffineCryptosystem(AlphabeticStrings())

P=A.encoding("This is the plaintext")

C=A.enciphering(3,1,P);C

When this is evaluated, we obtain the ciphertext

GWZDZDGWNUIBZOGNSG

To decrypt, we can shift by 23 or do the following:

A.deciphering(3,1,C)

When this is evaluated, we obtain

THISISTHEPLAINTEXT

We can also find the decryption key:

A.inverse key(3,1)

This yields

(9, 17)

Of course, if we “encrypt” the ciphertext using 9x+ 17, we obtain the plain-
text:

A.enciphering(9,17,C)

Evaluate to obtain

THISISTHEPLAINTEXT

Vigenère ciphers.

Let’s encrypt the plaintext This is the plaintext using the keyword ace

(that is, shifts of 0, 2, 4). Since we need to express the keyword as an alphabetic
string, it is efficient to add a symbol for these strings:

AS=AlphabeticStrings()

V=VigenereCryptosystem(AS,3)

K=AS.encoding("ace")

P=V.encoding("This is the plaintext")

C=V.enciphering(K,P);C

The “3” in the expression for V is the length of the key. When the above is
evaluated, we obtain the ciphertext

TJMSKWTJIPNEIPXEZX

To decrypt, we can shift by 0, 24, 22 (= ayw) or do the following:

V.deciphering(K,C)

When this is evaluated, we obtain

THISISTHEPLAINTEXT

Now let’s try the example from Section 2.3. The ciphertext can be cut
and pasted from ciphertexts.m in the MATLAB files (or, with a little more
difficulty, from the Mathematica or Maple files). A few control symbols need to
be removed in order to make the ciphertext a single string.

vvhq="vvhqwvvrhmusgjgthkihtssejchlsfcbgvwcrlryqtfs . . . czvile"

2



(We omitted part of the ciphertext in the above in order to save space.) Now
let’s computed the matches for various displacements. This is done by forming
a string that displaces the ciphertext by i positions by adding i blank spaces at
the beginning and then counting matches.

for i in range(0,7):

C2 = [" "]*i + list(C)

count = 0

for j in range(len(C)):

if C2[j] == C[j]:

count += 1

print i, count

The result is

0 331

1 14

2 14

3 16

4 14

5 24

6 12

The 331 is for a displacement of 0, so all 331 characters match. The high
number of matches for a displacement of 5 suggests that the key length is 5. We
now want to determine the key.

First, let’s choose every fifth letter, starting with the first (counted as 0 for
Sage). We extract these letters, put them in a list, then count the frequencies.

V1=list(C[0::5])

dict((x, V1.count(x)) for x in V1)

The result is

C: 7,

D: 1,

E: 1,

F: 2,

G: 9,

I: 1,

J: 8,

K: 8,

N: 3,

P: 4,

Q: 5,

R: 2,

T: 3,

U: 6,

V: 5,

W: 1,

Y: 1
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Note that A, B, H, L, M, O. S, X, Z do not occur among the letters,
hence are not listed. As discussed in Subsection 2.3.2, the shift for these letters
is probably 2. Now, let’s choose every fifth letter, starting with the second
(counted as 1 for Sage). We compute the frequencies:

V2=list(C[1::5])

dict((x, V2.count(x)) for x in V2)

A: 3,

B: 3,

C: 4,

F: 3,

G: 10,

H: 6,

M: 2,

O: 3,

P: 1,

Q: 2,

R: 3,

S: 12,

T: 3,

U: 2,

V: 3,

W: 3,

Y: 1,

Z: 2

As in Subsection 2.3.2, the shift is probably 14. Continuing in this way, we
find that the most likely key is {2, 14, 3, 4, 18}, which is codes. let’s decrypt:
V=VigenereCryptosystem(AS,5)

K=AS.encoding("codes")

P=V.deciphering(K,C);P

THEMETHODUSEDFORTHEPREPARATIONANDREADINGOFCODEMES . . . ALSETC

Hill ciphers.

Let’s encrypt the plaintext This is the plaintext using a 3×3 matrix. First,
we need to specify that we are working with such a matrix with entries in the
integers mod 26:

R=IntegerModRing(26)

M=MatrixSpace(R,3,3)

Now we can specify the matrix that is the encryption key:

K=M([[1,2,3],[4,5,6],[7,8,10]]);K

Evaluate to obtain

[ 1 2 3]

[ 4 5 6]

[ 7 8 10]
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This is the encryption matrix. We can now encrypt:

H=HillCryptosystem(AlphabeticStrings(),3)

P=H.encoding("This is the plaintext")

C=H.enciphering(K,P);C

If the length of the plaintext is not a multiple of 3 (= the size of the matrix),
then extra characters need to be appended to achieve this. When the above is
evaluated, we obtain the ciphertext

ZHXUMWXBJHHHLZGVPC

Decrypt:

H.deciphering(K,C)

When this is evaluated, we obtain

THISISTHEPLAINTEXT

We could also find the inverse of the encryption matrix mod 26:

K1=K.inverse();K1

This evaluates to

[ 8 16 1]

[ 8 21 24]

[ 1 24 1]

When we evaluate

H.enciphering(K,C):C

we obtain

THISISTHEPLAINTEXT

LFSR.

Consider the recurrence relation xn+4 ≡ xn+xn+1+xn+3 mod 2, with initial
values 1, 0, 0, 0. We need to use 0s and 1s, but we need to tell Sage that they
are numbers mod 2. One way is to define “o” (that’s a lower-case “oh”) and
“l” (that’s an “ell”) to be 0 and 1 mod 2:

F=GF(2)

o=F(0); l=F(1)

We also could use F(0) every time we want to enter a 0, but the present
method saves some typing. Now we specify the coefficients and initial values of
the recurrence relation, along with how many terms we want. In the following,
we ask for 20 terms:

s=lfsr sequence([l,l,o,l],[l,o,o,o],20);s

This evaluates to

[1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0]

Suppose we are given these terms of a sequence and we want to find what
recurrence relation generates it:

berlekamp massey(s)
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This evaluates to

x^4 + x^3 + x + 1

When this is interpreted as x4 ≡ 1 + 1x + 0x2 + 1x3 mod 2, we see that
the coefficients 1, 1, 0, 1 of the polynomial give the coefficients of recurrence
relation. In fact, it gives the smallest relation that generates the sequence.

Note: Even though the output for s has 0s and 1s, if we try entering the
command berlekamp massey([1,1,0,1,1,0]) we get x^3 - 1. If we instead
enter berlekamp massey([l,l,o,l,l,o]), we get x^2 + x + 1. Why? The
first is looking at a sequence of integers generated by the relation xn+3 = xn

while the second is looking at the sequence of integers mod 2 generated by
xn+2 ≡ xn + xn+1 mod 2. Sage defaults to integers if nothing is specified. But
it remembers that the 0s and 1s that it wrote in s are still integers mod 2.

Number Theory.
To find the greatest common divisor, type the following first line and then

evaluate:

gcd(119, 259)

7

To find the next prime greater than or equal to a number:

next prime(1000)

1009

To factor an integer:

factor(2468)

2^2 * 617

Let’s solve the simultaneous congruences x ≡ 1 (mod 5), x ≡ 3 (mod 7):

crt(1,3,5,7)

31

To solve the three simultaneous congruences x ≡ 1 (mod 5), x ≡ 3 (mod 7), x ≡
0 (mod 11):

a= crt(1,3,5,7)

crt(a,0,35,11)

66

Compute 123ˆ456 (mod 789):

mod(123,789)^456

699

Compute d so that 65d ≡ 1 (mod 987):

mod(65,987)^(-1)

410

Let’s check the answer:

mod(65*410, 987)

1

RSA.
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Suppose someone unwisely chooses RSA primes p and q to be consecutive
primes:

p=nextprime(987654321*10^50+12345); q=nextprime(p+1)

n=p*q

Let’s factor the modulus

n = pq = 9754610577899710410000000000000000000000000000000000002507

654321019000000000000000000000000000000000000000000161156941

without using the factor command:

s=N(sqrt(n), digits=70)

p1=next prime(s)

p1, q1

(98765432100000000000000000000000000000000000000000000012773,

98765432100000000000000000000000000000000000000000000012617)

Of course, the fact that p and q are consecutive primes is important for this
calculation to work. Note that we needed to specify 70-digit accuracy so that
round-off error would not give us the wrong starting point for looking for the
next prime. These factors we obtained match the original p and q, up to order:

p, q

(98765432100000000000000000000000000000000000000000000012617,

98765432100000000000000000000000000000000000000000000012773)

Lagrange interpolation.

Suppose we want to find the polynomial of degree at most 3 that passes
through the points (1, 1), (2, 2), (3, 21), (5, 12) mod the prime p = 37. We first
need to specify that we are working with polynomials in x mod 37. Then we
compute the polynomial:

R=PolynomialRing(GF(37),"x")

f=R.lagrange polynomial([(1,1),(2,2),(3,21), (5,12)]);f

This evaluates to

22*x^3 + 25*x^2 + 31*x + 34

If we want the constant term:

f(0)

43

Elliptic curves.

Let’s set up the elliptic curve y2 ≡ x3 + 2x + 3 mod 7:

E=EllipticCurve(IntegerModRing(7),[2,3])

The entry [2,3] gives the coefficients a, b of the polynomial x2 + ax + b.
More generally, we could use the vector [a,b,c,d,e] to specify the coefficients
of the general form y2 + axy + cy ≡ x3 + bx2 + dx+ e. We could also use GF(7)

instead of IntegerModRing(7) to specify that we are working mod 7. We could
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replace the 7 in IntegerModRing(7) with a composite modulus, but this will
sometimes result in error messages when adding points (this is the basis of the
elliptic curve factorization method).

We can list the points on E:

E.points()

[(0:1:0), (2:1:1), (2:6:1), (3:1:1), (3:6:1), (6:0:1)]

These are given in projective form. The point (0:1:0) is the point at infinity.
The point (2:6:1) can also be written as [2, 6]. We can add points:

E([2,1])+E([3,6])

(6 : 0 : 1)

E([0,1,0])+E([2,6])

(2 : 6 : 1)

In the second addition, we are adding the point at infinity to the point (2, 6)
and obtaining (2, 6). This is an example of ∞ + P = P . We can multiply a
point by an integer:

5*E([2,1])

(2 : 6 : 1)

We can list the multiples of a point in a range:

for i in range(10):

print(i,i*E([2,6]))

(0, (0 : 1 : 0))

(1, (2 : 6 : 1))

(2, (3 : 1 : 1))

(3, (6 : 0 : 1))

(4, (3 : 6 : 1))

(5, (2 : 1 : 1))

(6, (0 : 1 : 0))

(7, (2 : 6 : 1))

(8, (3 : 1 : 1))

(9, (6 : 0 : 1))

The indentation of the print line is necessary since it indicates that this is
iterated by the for command. To count the number of points on E:

E.cardinality()
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Sage has a very fast point counting algorithm (due to Atkins, Elkies, and
Schoof; it is much more sophisticated than listing the points, which would be
infeasible). For example,

p=next prime(10^50)

E1=EllipticCurve(IntegerModRing(p),[2,3])

n=E1.cardinality()

p, n, n-(p+1)

(100000000000000000000000000000000000000000000000151,
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99999999999999999999999999112314733133761086232032,

-887685266866238913768120)

As you can see, the number of points on this curve (the second output line) is
close to p+1. In fact, as predicted by Hasse’s theorem, the difference n−(p+1)
(on the last output line) is less in absolute value than 2

√
p ≈ 2× 1025.
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