Part 1
Quantum mechanics

1 State spaces and bra/ket notation

The state space of a quantum system, consisting of the positions, moments,
polarizations, spins, etc. of the various particles is modeled by a Hilbert space of
wave functions. For quantum computing we need only deal with finite quantum
systems and it suffices to consider finite dimensional complex vector spaces with
an inner product that are spanned by abstract wave functions such as the vector
).

Quantum state spaces and the transformations acting on them can be de-
scribed in terms of vectors and matrices or in the more compact bra/ket notation
invented by Dirac. |z) represents a column vector and (x| := |z)" (the conjugate
gradient). So (x| |z) equals the inner product and |x) (z| gives a matrix mapping
|z) to |z) (for an orthonormal basis only?). A matrix transformation changing
the basis is |z) (z| + |2) (z].

2 Quantum bits

A quantum bit, or qubit, is a unit vector in a two dimensional complex vector
space for which a particular basis denoted by {|0),|1)} has been fixed. They
can correspond for example to polarizations of photons or to the spin up spin
down state of an electron. Unlike classical bits however, qubits can be in a
superposition a|0)+b|1) where a and b are complex numbers such that |a|? +
|b]? = 1.

The measurement postulate of quantum mechanics states that any device
measuring a 2-d system has an associated orthonormal basis with respect to
which the quantum measurement takes place. Measurement of a state
transforms the state into one of the measuring device’s associated
basis vectors. It is important to note that a second measurement with respect
to the same basis will return the previous result with probability 1.

If a state a|0) + b|1) is measured with respect to the basis {|0),|1)} the
probability that the measured value is |0) is |a|? and of |1) is |b|?, where |a|? +
|b]> = 1. After measuring the state we change the original unknown state into
either the state 1]0) + 0|1) = |0) or the state 0]0) + 1]1) = |1).

2.1 Multiple Qubits

In classical physics, the possible states of a system of n particles, whose in-
dividual states can be described by a vector in a 2 dimensional vector space,
form a vector space of 2n dimensions. Whereas in classical physics, a com-
plete description of the state of this system requires only n bits, in quantum



physics, a complete description of the state of this system requires 2" — 1 com-
plex numbers. In a quantum system the resulting state space of a system of n
qubits has 2™ dimensions. The dimension of the state in classical physics corre-
sponds to the Cartesian product of the individual vector spaces for each particle:
dim(X xY) = dim(X) + dim(Y"), whereas in a quantum system it corresponds
to the tensor product: dim(X ®Y) = dim(X) x dim(Y"). For example, the basis
for a three qubit system is denoted as:

{1000} , 001} , 010} , 011}, 100}, [101),,[110) ,[111)}

where e.g. |001) is shorthand for |0) ® |0) ® [1).

The state |00) + |11) is an example of a quantum state that cannot be
described in terms of the state of each of it components (qubits) separately. In
other words, we cannot find ay,az, b1, be such that (a1 [0) + b1 1)) ® (as |0) +
by |1)) = |00) + |11). States that cannot be decomposed in this way are called
entangled states. These are the states that have no classical counterpart
and that provide the exponential growth of the state spaces with the number of
particles. Measurement gives another way of thinking about entangled particles.
Particles are not entangled if the measurement of one has no effect on the other.

2.2 Quantum Parallelism

Any arbitrary classical function f with m inputs and k output bits can be
implemented on a quantum computer. We can also build a quantum gatearray
Uy defined as a linear (unitary) transformation of the states to compute f(z)
as Uy |z,0) = |z, f(x)). If Uy is applied to a superposition, then, since Uy is
a linear transformation, it is applied to all basis vectors in the superposition
simultaneously and will generate a superposition of the results. In this way it
is possible to compute f(x) for n values of x in a single application of Uy. This
effect is called quantum parallelism.

The power of quantum algorithms comes from taking advantage of quantum
parallelism and entanglement. So most quantum algorithms begin by computing
a function of interest on a superposition of all values as follows. Start with n-
qubit state |00...0). Apply the Walsh-Hammard transformation to the state
to get a superposition

1 2n—1
N
2 =0
which should be viewed as the superposition of all integers 0 < z < 2". Add a
k-bit register |0) then by linearity
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when you measure the state you get |zo, f(x0)) for some randomly chosen .
The heart of any quantum algorithm is the way in which it manipulates quantum
parallelism so that desired results will be measured with high probability. One
way is to amplify the output values of interest, i.e. to transform the state
in such a way that values of interest have a larger amplitude and therefore
have a higher probability of being measured. Another way is to find properties
of all the values of f(z). This idea is exploited in Shor’s algorithm which
uses a quantum Fourier transformation to obtain the period of f, i.e. after
computing the superposition of all the values, he then computes the quantum
Fourier transform of the function, which like classical Fourier transforms, puts
all the amplitude of the function into multiples of the reciprocal of the period,
which is then used to factor the integer N. The biggest complication is that
the quantum Fourier transform is based on the fast Fourier transform and thus
gives only approximate results in most cases.

Part II
Quantum computation

3 Introduction

The observation that several apparently different definitions of what it meant
for a function to be computable yielded the same set of computable functions led
to the proposal of Church’s thesis: all computable devices can be simulated
by a Turing machine. This thesis greatly simplifies the study of computation
reducing the field of study from infinite potential computing devices to Turing
machines.

It is generally accepted that efficient and inefficient computable functions is
determined by whether the length of the computation scales polynomially or
superpolynomially with the input size.

The class of problems that can be solved by algorithms having a number of
steps polynomial in the input size is known as P.

Quantitative Church’s Thesis: Any physical (that can be built and made
to work) computing device can be simulated by a Turing machine in a number
of steps polynomial in the resources (space, time, precision, etc) used by the
computing device.

-If we let the precision of a quantum computer grow polynomially in the input
size (so the number of bits for precision grows logarithmically in the input size)
we appear to obtain a more powerful computer. Allowing the same polynomial
growth in precision does not appear to confer extra computing power to classical
mechanics.-

Computer scientists have become convinced of the truth of the quantita-
tive Church’s thesis through the failure of all proposed counterexamples. Most
of these proposed counterexamples have been based on the laws of classical



mechanics; however, the universe is in reality quantum mechanical. It seems
plausible that the natural computing power of classical mechanics corresponds
to that of Turing machines, while the natural computing power of quantum
mechanics might be greater.

Benioff showed in 1980, 1982, that the reversible unitary evolution was suffi-
cient to realize the computational power of a Turing machine, thus showing that
quantum mechanics is computationally at least as powerful as classical comput-
ers. Feynman in 1982 and 1986 suggested that quantum mechanics might be
computationally more powerful than Turing machines. In order to explore this,
Deutsch defined in 1985 and 1989 the quantum Turing machines and quantum
circuits.

Currently nobody knows how to build a quantum computer. The most
difficult obstacles appear to be decoherence of quantum superpositions through
the interaction of the computer with the environment (can be mitigated with
quantum error correction), and the implementation of state transformations
with enough precision. Both of these obstacles become more difficult as the size
of the computer grows.

Even if no useful quantum computer is ever built, any general method for
simulating quantum mechanics with at most a polynomial slowdown would lead
to a polynomial-time algorithm for factoring.

4 Quantum computation

Computation is fundamentally a physical process, and that what can be com-
puted efficiently may depend on subtle issues in physics.

A classical digital computer is a finite automaton, since any given computer
has a fixed amount of memory, however, this representation is not particularly
useful.

The complexity class BPP is viewed as the class of efficiently solvable prob-
lems, which require the aid of a random number generator and allowing a small
probability of error.

If they are allowed a small probability of error, quantum Turing machines
and quantum gate arrays can compute the same functions in polynomial time.
The class of functions computable in quantum polynomial time with a small
probability of error is called, by analogy to the classical class BPP, as BQP
(bounded error probability quantum polynomial time).

In order to use a physical system for computation, we must be able to change
the state of the system. The laws of quantum mechanics permit only unitary
transformations of state vectors. A unitary matrix is one whose conjugate trans-
pose is equal to its inverse, and requiring state transformations to be represented
by unitary matrices ensures that summing the probability over all possible out-
comes yields 1.



5 Quantum cryptographic algorithms

Even if large-scale quantum computers become a reality, this would not affect
information-theoretic schemes such as one time pad. Not even all public key
crypto is threatened by quantum computing: it has been argued [1] that there
could be strong one-way functions that can be computed efficiently with classical
computers and difficult to invert even with quantum computers. This suffices
to achieve computationally secure pseudorandom generation, bit commitment
schemes and zero-knowledge protocols for all of A”P. Information theoretic
secure (i.e. unconditionally) quantum bit commitment is impossible [2].

6 Prime factorization and discrete logarithms [3]

In 1994 Peter Shor gave the first practical computational problem that quan-
tum computers could solve faster than classical computers. Before his results
no one was sure how to use the quantum effects to speed up computation even
though there was the speculation that computation could be done more effi-
ciently. (Although there is no proof that factoring is not in P in the classical
setting).

6.1 Factorization

The exponent factorization method assumes we have an exponent r > 0 and an
integer a such that a” = 1lmodN (r is the order of a). With high probability the
algorithm will succeed computing the factors p,q of N as p = ged(a™/? + 1, N)
and ¢ = ged(a™? — 1, N).

Given N we select arandom a € {2,3..., N —1} (if a is 0 or 1, the exponent
factorization algorithm fails) and consider the sequence 1,a, a?,a3,...modN. If
a” = ImodN, then this sequence will repeat every r terms, so by computing the
period (or any multiple of the period) r of the function fy(z) = a®modN we
will have an 7 such that " = 1modN. Classically calculating r is as difficult as
trying to factor N. Quantum computers can potentially find r in time which
grows only as a quadratic function of the number of digits in V.

6.1.1 Quantum Fourier Transform

The discrete Fourier transform (DFT) of a (sampled) function (L samples) of
period r is a function concentrated near multiples of % If the period r divides
L evenly, the result is a function that has non-zero values only at multiples of
%. Otherwise the result approximates this behavior and the “biggest” values of
the DFT will occur in the integers close to multiples of %

The Fast Fourier transform (FFT) is a version of the DFT where L = 2™
for some m. The quantum Fourier transform (QFT) is essentially the standard



FFT adapted for a quantum computer. It is defined as

UQFT 2m Z 2micx /2™

The QFT operates on the amplitude of the quantum state by sending

S @) — 3 Gl
x=0 c=0

where G(c) represents the DFT of g(z). So if the state is measured after the
QFT is performed, the probability that the result is |c) would be |G(c)|?. Shor

shows that the QFT is efficiently computable by using only W gates.

6.1.2 Shor’s Algorithm

The steps of the algorithm are illustrated with an example where we factor
M = 21.

1. Quantum parallelism: Choose an arbitrary integer a. Assume ged(a,n) =
1; otherwise we have a factor of n. Let m be the solution to N2 < 2™ <
2N2. |This choice is made so that the approximation for functions whose
period is not a power of 2 will be good enough for the rest of the algorithm
to work.] Use the quantum parallelism to compute fy(x) for all integers
from 0 to 2™ — 1. The function is thus encoded in the quantum state

2m—1

o Z |z, fn (@

If a = 11 then m = 9. If we measure the second part, the probability to
obtain a measurement of 1 would be 43/2° ~ 1/6 as fn(z) repeats every 6
terms, and the approximation comes from the fact that 6 does not divide
29 for the FFT. I guess that for larger primes the period of fy(z) is much
larger and the probability of measuring 1 immediately would decrease
exponentially.

2. A step whose amplitude has the same period as fy(x): Measure the bits
of the state encoding f () (the last [logy M| qubits) obtaining a random
value u. The value u is not of interest in itself; only the effect the mea-
surement has on our set of superpositions is of interest. This measurement
projects the state space onto the subspace compatible with the measured
value, so the state after measurement is

2m—1

C'Z x) |z, u)



where " B
g(x)—{ li fN(‘T)_u

0 otherwise

Notice that the x’s appearing in the sum differ by multiples of the period,
s0 g(x) is the function we are looking for, in fact, g(x)/C is the probability
mass function of measuring = after measuring u. In the above example
with a = 11, if we measure the value 2, we would reduce our state to

1
V85

if we could measure two elements x and y in the above sum we would
have the period (or a multiple of it) since 11* = 11¥%mod21, and thus
r =y — z. However the laws of quantum physics tells us that the second
measurement would give the same answer as the first.

(15,2) + [11,2) + |17,2) + ... + |503, 2) + [509, 2))

. Applying a quantum Fourier transform: The |u) part of the state will
not be used, so we will no longer write it. Apply the QFT to the state
obtained above:

Ugrr: 3 g@)]e) — 3 G0
x=0 c=0

where most of the amplitude of G(c¢) will be close to j ? for some integer
7.
. Extracting the period: Making an observation of the state will give a result

v. Shor showed that with high probability (of at least 1/372), v is within
1 of some jZ- i.e.

2m| 1
v it <=
I 2
Since 2™ > N then with high probability £ is within 3+ from %, i.e.
v j 1
2m | " 2N?

Furthermore, two distinct rational numbers % and i—i with 0 <7 < N and

0 <7’ < N are separated more than #, ie.
., 1
i .1
r ! N2

so we can use the (efficient) continued fractions algorithm to find a ratio-
nal number £ s.t. 0 < ¢ < N (within 535 of 5%, hopefully) and with

high probability the rational number obtained will be % We take the
denominator ¢ of the obtained fraction as our guess for the period, which



will work when j and r are relatively prime ( so ¢ would be a factor of
the period, and not the period itself). Shor shows that at least with prob-
ability ¢(r)/3r (where ¢ is the Euler toitent function) we obtain r. It is
known that ¢(r)/r > §/loglogr for some constant d, thus repeating the
experiment O(loglogr) we are assured a high probability of success. We
can also try nearby v’s or test for multiples of ¢ as heuristics, to avoid
repetitions of the quantum evaluations.

5. Finding a factor of N: Since (a’/? — 1)(a"/? + 1) = a" — 1 = OmodN,
the numbers ged(z"/2 — 1, N) and ged(2"/? 4 1, N) will be factors of N.
This procedure fails only if 7 is odd, or if "/2 = —1modN, in which case
the procedure yields the trivial factors 1 and N. The algorithmic form is
called the exponent factorization method: write r as 2"m with m odd for
some k. Let by = a™modN. Square successively by to get by, ba, . .., until
we reach 1modN. If b, is the last b; # 1modN, compute ged(b, — 1, N)
to get a factor of V.

6. Repeat the algorithm if necessary: Various things could have gone wrong
so that this process does not yield a factor of M: the value of v is not
within 1 of 2-. The period r and the multiplier j could have had a
common factor, or the exponent factorization method fails. However it is

very likely that, in a few attempts, a factorization of N will be found.

6.2 Discrete logarithms

For simplicity we will present the case assuming we can compute a DFT (to avoid
the approximations made due to the FFT). Let a be a generator of a group G
of order gq. Given b, the discrete logarithm problem is to find a0 < d < ¢ —1
such that b = a?. Now consider the function f(x,y) = a®b¥. Note that it has
two independent periods

fle+aqy) = a%a®V = f(z,y)
flet+dy—1) = aa®b~! = f(z,y)
so we can compute with quantum parallelism the above function to obtain
LS )
1 =02=0 ot

so measuring the last register we obtain a value a”® which implies that z =
xo — dymod q. the state is then

1 q
- Z |x0 - dy7 y>
q ¥=0

Taking the DFT we obtain after simplification
5
2#imgx'/q| 'y = dx' d >
e z'y x'mod q
Vi 5=,



So from a measurement of the states we can deduce d = y'(2')"!modq if
ged(',q) = 1.

7 Quantum Key Distribution

The goal is to establish secret keys over unauthenticated channels without the
need of public key cryptography. Most of the algorithms use an encoding
based on two non-commuting observable (i.e. an eavesdropper cannot acquire
sharp values of the two observables), e.g. rectilinear {|—),|1)} and diagonal
{1/ ,I\\) } polarizations of photons. If a photon is polarized as |—), the prob-
ability of being read in the basis {| ), |\)}is 1/2 for each base.

The transmitter sends photons with one of the four polarizations (0 or 1
in rectilinear or diagonal form), with basis chosen at random. The receiver
chooses at random the type of measurement but keeps it secret. Subsequently
the receiver announces the type of measurement and the sender tells the receiver
which measurements were of the correct type. An eavesdropper introduces error
to this transmission because he does not know in advance the type of polariza-
tion of each photon. The two legitimate users of the quantum channel test for
eavesdropping by revealing a random subset of the key bits and check in public
the error rate.

7.1 Experimental Quantum Cryptography [4]
to be added

7.2 Free-space quantum key distribution
to be added

8 Other Quantum Cryptographic Protocols

Secure quantum multi-party computation [5].
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