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In our example, we write 6 = 2 · 3 (a power of 2 times an odd number)
and compute (in the notation of Section 6.4)

b0 ≡ 113 ≡ 8 (mod 21)

b1 ≡ 116 ≡ 1 (mod 21)

gcd(b0 − 1, 21) = gcd(7, 21) = 7,

so we obtain 21 = 7 · 3.
In general, once we have a candidate for r, we check that ar ≡ 1 (mod n).

If not, we were unlucky, so we start over with a new a and form a new
sequence of quantum states. If ar ≡ 1 (mod n), then we use the exponent
factorization method from Section 6.4. If this fails to factor n, start over
with a new a. It is very likely that, in a few attempts, a factorization of n
will be found.

Continued Fractions

Finally, we show how to find the fraction j/r using the method of continued
fractions. We know that r ≤ φ(n) < n, so we are trying to approximate a
number (such as 427/512) by a rational number j/r with r < n.

First, consider the problem of finding a rational number with small de-
nominator close to a real number x. For example, suppose we want to
approximate π. Of course, we could use 314/100 = 157/50, but we can be
more accurate and use a smaller denominator by using 22/7. So a larger
denominator does not guarantee a better approximation.

A general procedure for approximating a real number x is the following.
Let [x] denote the greatest integer less than or equal to x. Let a0 = [x] and
x0 = x. Then define

xi+1 =
1

xi − ai

, ai+1 = [xi+1].

For example, here’s how to proceed for π. We have [π] = 3. Then x1 =
1/(π − 3) ≈ 7.06251 and a1 = [x1] = 7. Next x2 = 1/(x1 − a1) ≈ 15.9966,
and a2 = 15. Continuing, we have x3 = 1/(x2 − a2) ≈ 1.00342, a3 = 1, and
x4 = 1/(x3 − a3) ≈ 292.6, so a4 = 292. This yields the expansion

π = 3 +
1

7 + 1

15+
1

1+ 1
292+···

.

If we stop after a few levels of this continued fraction, we obtain the approx-
imations
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7
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7
,

333

106
,

355

113
, · · · .
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The last approximation is very accurate:

π = 3.14159265 . . . , and 355/113 = 3.14159292 . . . .

This procedure can be carried out for any real number x and produces a
sequence of rational numbers r1/s1, r2/s2, . . . . Each rational number rk/sk

gives a better approximation to x than any of the preceding rational numbers
rj/sj with 1 ≤ j < k. It can be shown that if |x−(r/s)| < 1/2s2 for integers
r, s, then r/s = ri/si for some i. For example, |π− 22/7| ≈ .001 < 1/98 and
22/7 = r2/s2.

Now let’s apply the procedure to 427/512. We have

427
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= 0 +

1

1 + 1
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1
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2

.

This yields the numbers

0, 1,
5

6
,

211

253
,

427

512
.

Since we know the period is less than n = 21, the best guess is the last
denominator less than n, namely r = 6.

In general, we compute the continued fraction expansion of c/2m, where
c is the result of the measurement. Then we compute the approximations,
as before. The last denominator less than n is the candidate for r.

Final Words

The capabilities of quantum computers and quantum algorithms are of sig-
nificant importance to economic and government institutions. Many secrets
are protected by cryptographic protocols. Quantum cryptography’s poten-
tial for breaking these secrets as well as its potential for protecting future
secrets has caused this new research field to grow rapidly over the past few
years.

Although the first full-scale quantum computer is probably many years
off, and there are still many who are skeptical of its possibility, quantum
cryptography has already succeeded in transmitting secure messages over
a distance of greater than 24 km, and quantum computers have been built
that can handle a (very) small number of qubits. Quantum computation and
cryptography have already changed the manner in which computer scientists
and engineers perceive the capabilities and limits of the computer. Quantum
computing has rapidly become a popular interdisciplinary research area, and
promises to offer many exciting new results in the future.


