## Take Home Exam: AMSC/CMSC 666

 due 5pm, Wednesday, 15 December(1) Let $Q_{\Delta}(f)$ denote quadrature over an interval by the trapezoidal rule with uniform subintervals of length $\Delta$. Use the Euler-Maclaurin formula to extrapolate $Q_{\Delta}, Q_{2 \Delta}, Q_{3 \Delta}$, and $Q_{6 \Delta}$ to obtain an eighth order accurate quadrature.
(2) Derive the one-, two-, three-, and four-point Gaussian quadrature formulas such that

$$
\int_{-1}^{1} f(x) x^{2} \mathrm{~d} x=\sum_{j=1}^{n} f\left(x_{j}\right) w_{j} .
$$

Given bounds on the error of these formulas.
(3) We wish to solve $A x=b$ iteratively where

$$
A=\left(\begin{array}{ccc}
1 & 2 & -2 \\
1 & 1 & 1 \\
2 & 2 & 1
\end{array}\right)
$$

Show that the Jacobi Method converges while the Gauss-Seidel Method does not. For what values of the parameter $\omega$ does the SOR method converge?
(4) Let $A \in \mathbb{R}^{N \times N}$ be self-adjoint and positive definite with respect to a distinguished real inner product $(\cdot \mid \cdot)$ over $\mathbb{R}^{N}$. Let $b \in$ $\mathbb{R}^{N}$. Define

$$
f(y)=(y \mid A y)-2(b \mid y) \quad \text { for every } y \in \mathbb{R}^{N} .
$$

Consider the steepest descent method to solve $A x=b$ :
choose an initial iterate $x^{(0)} \in \mathbb{R}^{N}$;
compute the initial residual $r^{(0)}=b-A x^{(0)}$;

$$
\begin{aligned}
& \alpha_{n}=\frac{\left(r^{(n)} \mid r^{(n)}\right)}{\left(r^{(n)} \mid A r^{(n)}\right)} ; \\
& x^{(n+1)}=x^{(n)}+\alpha_{n} r^{(n)} ; \\
& r^{(n+1)}=r^{(n)}-\alpha_{n} A r^{(n)} .
\end{aligned}
$$

Let $e^{(n)}=x^{(n)}-x$ be the error of the $n^{\text {th }}$ iterate.
(a) Let $\kappa$ be the condition number of $A$. Prove that for every nonzero $y \in \mathbb{R}^{N}$ one has

$$
1 \leq \frac{(y \mid A y)\left(y \mid A^{-1} y\right)}{(y \mid y)^{2}} \leq \frac{(\kappa+1)^{2}}{4 \kappa}
$$

Hints: Lagrange multipliers and diagonalize.
(b) Prove that

$$
\frac{\left\|e^{(n+1)}\right\|_{A}^{2}}{\left\|e^{(n)}\right\|_{A}^{2}}=1-\frac{\left(r^{(n)} \mid r^{(n)}\right)}{\left(r^{(n)} \mid A r^{(n)}\right)} \frac{\left(r^{(n)} \mid r^{(n)}\right)}{\left(r^{(n)} \mid A^{-1} r^{(n)}\right)}
$$

where $\|\cdot\|_{A}$ denotes the $A$-norm.
(c) Use the above facts to derive a bound on $\left\|e^{(n)}\right\|_{A}$ in terms of $\kappa$ and $\left\|e^{(0)}\right\|_{A}$. Compare the result with the similar estimate derived in class for the conjugate gradient method.
(5) Let $A$ be the symmetric tridiagonal real matrix

$$
A=\left(\begin{array}{ccccc}
a_{0} & b_{1} & 0 & \cdots & 0  \tag{1}\\
b_{1} & a_{1} & b_{2} & \ddots & \vdots \\
0 & b_{2} & a_{2} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & b_{n} \\
0 & \cdots & 0 & b_{n} & a_{n}
\end{array}\right)
$$

Show that $A$ is irreducible if and only if every $b_{m}$ is nonzero.
(6) Let $A$ be an irreducible symmetric tridiagonal real matrix of the form (1). Let $\left\{p_{m}(x)\right\}_{m=0}^{n+1}$ be the sequence of polynomials generated by

$$
p_{0}(x)=1, \quad p_{1}(x)=\left(x-a_{0}\right),
$$

$p_{m+1}(x)=\left(x-a_{m}\right) p_{m}(x)-b_{m}^{2} p_{m-1}(x) \quad$ for $m=1, \cdots, n$.
Let $\pi_{0}=1$, and $\pi_{m}=b_{m} \pi_{m-1}$ for every $m=1, \cdots, n$. Let $q_{m}(x)=p_{m}(x) / \pi_{m}$ for every $m=0, \cdots, n$.
(a) Show that $p_{n+1}(x)$ has $n+1$ simple roots $\left\{x_{m}\right\}_{m=0}^{n+1}$.
(b) Show that $V^{-1} A V$ is diagonal where

$$
V=\left(\begin{array}{ccccc}
q_{0}\left(x_{0}\right) & q_{0}\left(x_{1}\right) & q_{0}\left(x_{2}\right) & \cdots & q_{0}\left(x_{n}\right) \\
q_{1}\left(x_{0}\right) & q_{1}\left(x_{1}\right) & q_{1}\left(x_{2}\right) & \cdots & q_{1}\left(x_{n}\right) \\
q_{2}\left(x_{0}\right) & q_{2}\left(x_{1}\right) & q_{2}\left(x_{2}\right) & \cdots & q_{2}\left(x_{n}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_{n}\left(x_{0}\right) & q_{n}\left(x_{1}\right) & q_{n}\left(x_{2}\right) & \cdots & q_{n}\left(x_{n}\right)
\end{array}\right) .
$$

(7) Given any self-adjoint matrix $A \in \mathbb{R}^{N \times N}$ and any unit vector $u \in \mathbb{R}^{N}$, use the Lanczos algorithm to construct an orthogonal matrix $Q$ such that the first column of $Q$ is $u$ and that $Q^{T} A Q$ is tridiagonal.
(8) Recall that $A \in \mathbb{C}^{N \times N}$ is called normal whenever $A^{*} A=A A^{*}$. Show that $A$ is normal and invertible if and only if there exists a unitary matrix $U$ and a self-adjoint, positive definite matrix $P$ such that $A=U P=P U$.
(9) Let $A \in \mathbb{R}^{N \times N}$ be normal and invertible. Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be the sequence of $N \times N$ matricies constructed recursively by the $Q R$ Method: $A_{0}=A, A_{n}=Q_{n} R_{n}$, and $A_{n+1}=R_{n} Q_{n}$, where every $Q_{n}$ is orthogonal and every $R_{n}$ is upper triangular with positive diagonal entries. Show that every $A_{n}$ is normal. (Hint: The result of the previous problem might be helpful.)
(10) Let $H_{0} \in \mathbb{R}^{N \times N}$ and $H(t)$ satisfy the isospectral flow initial value problem

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=J H-H J, \quad H(0)=H_{0}
$$

where $J(t) \in \mathbb{R}^{N \times N}$ such that $J(t)^{T}=-J(t)$ for every $t \in \mathbb{R}$. Show that if $H_{0}$ is normal then so is $H(t)$ for every $t \in \mathbb{R}$.

