
Take Home Exam: AMSC/CMSC 666
due 5pm, Wednesday, 15 December

(1) Let Q∆(f) denote quadrature over an interval by the trape-
zoidal rule with uniform subintervals of length ∆. Use the
Euler-Maclaurin formula to extrapolate Q∆, Q2∆, Q3∆, and Q6∆

to obtain an eighth order accurate quadrature.
(2) Derive the one-, two-, three-, and four-point Gaussian quadra-

ture formulas such that
∫ 1

−1

f(x)x2 dx =
n

∑

j=1

f(xj) wj .

Given bounds on the error of these formulas.
(3) We wish to solve Ax = b iteratively where

A =





1 2 −2
1 1 1
2 2 1



 .

Show that the Jacobi Method converges while the Gauss-Seidel
Method does not. For what values of the parameter ω does the
SOR method converge?

(4) Let A ∈ RN×N be self-adjoint and positive definite with respect
to a distinguished real inner product ( · | · ) over RN . Let b ∈
RN . Define

f(y) = (y |Ay) − 2(b | y) for every y ∈ RN .

Consider the steepest descent method to solve Ax = b:

choose an initial iterate x(0) ∈ RN ;

compute the initial residual r(0) = b − Ax(0) ;

αn =

(

r(n) | r(n)
)

(

r(n) |Ar(n)
) ;

x(n+1) = x(n) + αnr
(n) ;

r(n+1) = r(n) − αnAr(n) .

Let e(n) = x(n) − x be the error of the nth iterate.
(a) Let κ be the condition number of A. Prove that for every

nonzero y ∈ RN one has

1 ≤
(y |Ay)(y |A−1y)

(y | y)2
≤

(κ + 1)2

4κ
.

Hints: Lagrange multipliers and diagonalize.
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(b) Prove that
∥

∥e(n+1)
∥

∥

2

A
∥

∥e(n)
∥

∥

2

A

= 1 −

(

r(n) | r(n)
)

(

r(n) |Ar(n)
)

(

r(n) | r(n)
)

(

r(n) |A−1r(n)
) ,

where ‖ · ‖A denotes the A-norm.
(c) Use the above facts to derive a bound on

∥

∥e(n)
∥

∥

A
in terms

of κ and
∥

∥e(0)
∥

∥

A
. Compare the result with the similar es-

timate derived in class for the conjugate gradient method.
(5) Let A be the symmetric tridiagonal real matrix

(1) A =

















a0 b1 0 · · · 0

b1 a1 b2
. . .

...

0 b2 a2
. . . 0

...
. . .

. . .
. . . bn

0 · · · 0 bn an

















.

Show that A is irreducible if and only if every bm is nonzero.
(6) Let A be an irreducible symmetric tridiagonal real matrix of

the form (1). Let {pm(x)}n+1
m=0 be the sequence of polynomials

generated by

p0(x) = 1 , p1(x) = (x − a0) ,

pm+1(x) = (x − am)pm(x) − b 2
mpm−1(x) for m = 1, · · · , n .

Let π0 = 1, and πm = bmπm−1 for every m = 1, · · · , n. Let
qm(x) = pm(x)/πm for every m = 0, · · · , n.
(a) Show that pn+1(x) has n + 1 simple roots {xm}

n+1
m=0.

(b) Show that V −1AV is diagonal where

V =













q0(x0) q0(x1) q0(x2) · · · q0(xn)
q1(x0) q1(x1) q1(x2) · · · q1(xn)
q2(x0) q2(x1) q2(x2) · · · q2(xn)

...
...

...
. . .

...
qn(x0) qn(x1) qn(x2) · · · qn(xn)













.

(7) Given any self-adjoint matrix A ∈ RN×N and any unit vector
u ∈ RN , use the Lanczos algorithm to construct an orthogonal
matrix Q such that the first column of Q is u and that QT AQ
is tridiagonal.

(8) Recall that A ∈ CN×N is called normal whenever A∗A = AA∗.
Show that A is normal and invertible if and only if there exists
a unitary matrix U and a self-adjoint, positive definite matrix
P such that A = UP = PU .
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(9) Let A ∈ RN×N be normal and invertible. Let {An}
∞

n=0 be the
sequence of N×N matricies constructed recursively by the QR-
Method: A0 = A, An = QnRn, and An+1 = RnQn, where every
Qn is orthogonal and every Rn is upper triangular with positive
diagonal entries. Show that every An is normal. (Hint: The
result of the previous problem might be helpful.)

(10) Let H0 ∈ RN×N and H(t) satisfy the isospectral flow initial
value problem

dH

dt
= JH − HJ , H(0) = H0 ,

where J(t) ∈ R
N×N such that J(t)T = −J(t) for every t ∈ R.

Show that if H0 is normal then so is H(t) for every t ∈ R.


