
Take Home Exam: AMSC/CMSC 666
due 5pm, Wednesday, 15 December

SOLUTIONS

(1) Let Q∆(f) denote quadrature over an interval by the trapezio-
dal rule with uniform subintervals of length ∆. Use the Euler-
Maclaurin formula to extrapolate Q∆(f), Q2∆(f), Q3∆(f), and
Q6∆(f) to obtain an eighth order accurate quadrature.

Solution. Let I(f) denote the exact value of the integral. For
f ∈ C10 the Euler-Maclaurin asymptotic formula then states
that

Q∆(f) = I(f) + α2δ
2 + α4δ

4 + α6δ
6 + O(∆8) .

It follows that

Q2∆(f) = I(f) + 4α2δ
2 + 42α4δ

4 + 43α6δ
6 + O(∆8)

= I(f) + 4α2δ
2 + 16α4δ

4 + 64α6δ
6 + O(∆8) ,

Q3∆(f) = I(f) + 9α2δ
2 + 92α4δ

4 + 93α6δ
6 + O(∆8)

= I(f) + 9α2δ
2 + 81α4δ

4 + 729α6δ
6 + O(∆8) ,

Q6∆(f) = I(f) + 36α2δ
2 + 362α4δ

4 + 363α6δ
6 + O(∆8)

= I(f) + 36α2δ
2 + 1296α4δ

4 + 46656α6δ
6 + O(∆8) ,

There are many ways to extrapolate. About the simplest is to
set

Q(f) = w1Q∆(f) + w2Q2∆(f) + w3Q3∆(f) + w6Q6∆(f) ,

where w1, w2, w3, and w6, satisfy








1 1 1 1
1 4 9 36
1 16 81 1296
1 64 729 46656

















w1

w2

w3

w6









=









1
0
0
0









.

The solution of this system is

w1 =
1296

840
, w2 = −567

840
, w3 =

112

840
, w6 = − 1

840
.

This can be obtained numerically, or analytically. �

(2) Derive the one-, two-, three-, and four-point Gaussian quadra-
ture formulas such that

∫ 1

−1

f(x)x2 dx =

n
∑

j=1

f(xj) wj .

Give bounds on the error of these formulas.
1
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Solution. First, the associated orthogonal monic polynomials
through fourth degree are

p0(x) = 1 , p1(x) = x , p2(x) = x2 − 3
5
,

p3(x) = x3 − 5
7
x , p4(x) = x4 − 10

9
x2 +

5

21
.

The roots of the polynomials p1, p2, p3, and p4 respectively are

{0} ,
{

±
√

3
5

}

,
{

0 , ±
√

5
7

}

,

{

±
√

5
9
± 2

9

√

10
7

}

.

These are the quadrature points for the one-, two-, three-, and
four-point Gaussian quadrature formulas respectively.

The one-point Gaussian quadrature formula is
∫ 1

−1

f(x) x2dx ≈ f(0)w1 ,

where the weight w1 is determined by

w1 =

∫ 1

−1

x2 dx = 2
3
.

Hence, w1 = 2
3
.

The two-point Gaussian quadrature formula is
∫ 1

−1

f(x) x2dx ≈ f
(

−
√

3
5

)

w1 + f
(

√

3
5

)

w2 ,

where the weights w1 and w2 are determined as follows. By
symmetry one sets w1 = w2 = w. This insures that every odd
function will be integrated exactly. Then w is determined by

2w =

∫ 1

−1

x2 dx = 2
3
.

Hence, w1 = w2 = w = 1
3
.

The three-point Gaussian quadrature formula is
∫ 1

−1

f(x) x2dx ≈ f
(

−
√

5
7

)

w1 + f(0)w2 + f
(

√

5
7

)

w3 ,

where the weights w1, w2, and w3 are determined as follows.
By symmetry one sets w1 = w3 = w. This insures that every
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odd function will be integrated exactly. Then w and w2 are
determined by

w2 + 2w =

∫ 1

−1

x2 dx = 2
3
,

25
7
w =

∫ 1

−1

x4 dx = 2
5
.

Hence, w1 = w3 = w = 7
25

while w2 = 8
75

.
The four-point Gaussian quadrature formula is

∫ 1

−1

f(x) x2dx ≈ f
(

−
√

5
9

+ 2
9

√

10
7

)

w1 + f
(

−
√

5
9
− 2

9

√

10
7

)

w2

+ f
(

√

5
9
− 2

9

√

10
7

)

w3 + f
(

√

5
9

+ 2
9

√

10
7

)

w4 ,

where the weights w1, w2, w3, and w4 are determined as follows.
By symmetry one sets w1 = w4 = w+ and w2 = w3 = w−. This
insures that every odd function will be integrated exactly. Then
w+ and w− are determined by

2w− + 2w+ =

∫ 1

−1

x2 dx = 2
3
,

2
(

5
9
− 2

9

√

10
7

)

w−+

2
(

5
9

+ 2
9

√

10
7

)

w+ =

∫ 1

−1

x4 dx = 2
5
.

These equations reduce to

w− + w+ = 1
3
,

w+ − w− = 1
15

√

7
10

.

Hence, w1 = w4 = w+ = 1
6

+ 1
30

√

7
10

while w2 = w3 = w− =

1
6
− 1

30

√

7
10

.

When f ∈ C2n([−1, 1]) the error of the n-point Gaussian
quadrature formula can be generally bounded by

∣

∣I(f) − Qn(f)
∣

∣ ≤ 1

(2n)!

∥

∥f (2n)
∥

∥

∞

∫ 1

−1

pn(x)2 x2dx .
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The square integrals of the polynomials p1, p2, p3, and p4 may
be computed using the fact that

∫ 1

−1

pn(x)2 x2 dx =

∫ 1

−1

pn(x) xn+2 dx .

One finds that
∫ 1

−1

p1(x)2 x2dx =

∫ 1

−1

x4dx =
2

5
,

∫ 1

−1

p2(x)2 x2dx =

∫ 1

−1

x6 − 3
5
x4dx =

8

175
,

∫ 1

−1

p3(x)2 x2dx =

∫ 1

−1

x8 − 5
7
x6dx =

8

441
,

∫ 1

−1

p4(x)2 x2dx =

∫ 1

−1

x10 − 10
9
x8 + 5

21
x6dx =

128

43, 659
.

One thereby obtains the bounds

∣

∣I(f) − Q1(f)
∣

∣ ≤ 1

5

∥

∥f (2)
∥

∥

∞
,

∣

∣I(f) − Q2(f)
∣

∣ ≤ 1

525

∥

∥f (4)
∥

∥

∞
,

∣

∣I(f) − Q3(f)
∣

∣ ≤ 1

39, 690

∥

∥f (6)
∥

∥

∞
,

∣

∣I(f) − Q4(f)
∣

∣ ≤ 1

13, 752, 585

∥

∥f (8)
∥

∥

∞
.

�

(3) We wish to solve Ax = b iteratively where

A =





1 2 −2
1 1 1
2 2 1



 .

Show that the Jacobi method converges while the Gauss-Seidel
method does not. For what values of the parameter ω does the
SOR method converge?

Solution. The matrix A decomposes as A = D−L−U where

D = I , L =





0 0 0
−1 0 0
−2 −2 0



 , U =





0 −2 2
0 0 −1
0 0 0



 .
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The growth matrix for the Jacobi method is

GJ = D−1(L + U) =





0 −2 2
−1 0 −1
−2 −2 0



 .

Its characteristic polynomial is given by

pJ(λ) = det
(

λI − GJ

)

= λ3 .

Hence, its spectrum is given by sp(GJ) = {0} and its spectral
radius is ρ(GJ) = 0. Because ρ(GJ) < 1 the Jacobi method
converges.

The growth matrix for the Gauss-Seidel method is

GGS = (D − L)−1U

=





1 0 0
1 1 0
2 2 1





−1 



0 −2 2
0 0 −1
0 0 0





=





1 0 0
−1 1 0
0 −2 1









0 −2 2
0 0 −1
0 0 0





=





0 −2 2
0 2 −3
0 0 2



 .

Because this matrix is upper triangular, one can read off that
its spectrum is given by sp(GGS) = {0, 2} and that its spectral
radius is ρ(GGS) = 2. Because ρ(GGS) > 1 the Gauss-Seidel
method diverges.

The growth matrix for the SOR method is

G(ω) = (D − ωL)−1[(1 − ω)D + ωU ] .

Then λ ∈ sp
(

G(ω)
)

if and only if

0 = det
(

λI − G(ω)
)

= det
(

λI − (D − ωL)−1[(1 − ω)D + ωU ]
)

= det
(

(D − ωL)−1
)

det
(

(λ + ω − 1)D − λωL − ωU
)

.
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Hence, λ ∈ sp
(

G(ω)
)

if and only if

0 = det
(

(λ + ω − 1)D − λωL − ωU
)

= det





λ + ω − 1 2ω −2ω
λω λ + ω − 1 ω
2λω 2λω λ + ω − 1





= (λ + ω − 1)3 − 4ω3λ2 + 4ω3λ

= λ3 − (3 − 3ω + 4ω3)λ2 + (3(1 − ω)2 + 4ω3)λ − (1 − ω)3 .

We must identify those values of ω ∈ R for which all the roots
of this cubic equation lie within the unit circle |λ| < 1.

Because (1 − ω)3 is the product of these roots, a necessary
condition that they all lie within the unit circle |λ| < 1 is that
|1−ω| < 1. This means that ω must be restricted to the interval
(0, 2).

Because (3 − 3ω + 4ω3) is the product of these roots, a nec-
essary condition that they all lie within the unit circle |λ| < 1
is that |3−3ω +4ω3| < 3. Because ω is already retricted to the
interval (0, 2), this new requirement means ω must be restricted

to the interval (0,
√

3
2

).

Notice that the restriction ω ∈ (0,
√

3
2

) contains the result of
Part (b) because the Gauss-Seidel Method is the special case
ω = 1. Indeed, in that case the cubic equation is

0 = λ3 − 4λ2 + 4λ ,

which has one simple root λ = 0 and one double root λ = 2.
Now let us assume that 0 < ω is small. An asymptotic anal-

ysis shows that the polynomial has one simple simple root and
a conjugate pair of simple complex roots with the expansions

λ = 1 − ω − σω(4ω)
1

3 + O
(

ω
5

3

)

,

where σ is one of the three cube roots of unity, σ = 1, σ =

−1
2

+ i
√

3
2

, or σ = −1
2
− i

√
3

2
. It is easily checked that when ω

is sufficiently small all of these roots lie within the unit circle
|λ| < 1.

Because the roots of the cubic equation depend continuously
on ω, and because when ω > 0 is small all these roots these

roots lies within the unit circle while when ω >
√

3
2

at least one

root lies outside the unit circle, there must be some ω ∈ (0,
√

3
2

]
such that at least one root lies on the unit circle. At such an ω
there are three possibilities: either 1 is a root, −1 is a root, or
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there is a conjugate pair of roots {σ, σ̄} with |σ| = 1. We will
consider each of these possibilities.

If 1 is a root of the cubic equation for some ω then, by setting
λ = 1 in the cubic equation, we see that ω3 = 0. Therefore this
possibility does not occur.

If −1 is a root of the cubic equation for some ω then, by
setting λ = −1 in the cubic equation, we see that

(ω − 2)3 = 8ω3 .

The only real root of this equation is ω = −2. Therefore this
possibility does not occur.

The only possiblity left is that there must be some ω ∈ (0,
√

3
2

]
with a conjugate pair of complex roots {σ, σ̄} with |σ| = 1 and
a third root λo in (−1, 1). These roots must satisfy

λo + σ + σ̄ = 3 − 3ω + 4ω3 ,

1 + λo(σ + σ̄) = 3(1 − ω)2 + 4ω3 ,

λo = (1 − ω)3 .

Upon using the third equation above to eliminate λo from the
first two equations, we obtain

σ + σ̄ = 3 − 3ω + 4ω3 − (1 − ω)3

= 2 − 3ω2 + 5ω3 ,

(1 − ω)3(σ + σ̄) = 3(1 − ω)2 + 4ω3 − 1

= 2 − 6ω + 3ω2 + 4ω3 .

Upon using the first equation above to eliminate σ+ σ̄ from the
second equation, we obtain

(1 − ω)3
(

2 − 3ω2 + 5ω3
)

= 2 − 6ω + 3ω2 + 4ω3 .

After expanding the left-hand side above and taking advantage
of some nice cancellations, this equation becomes

8ω3 − 24ω4 + 18ω5 − 5ω6 = 0 .

We must therefore find ω ∈ (0,
√

3
2

] that satisfies the cubic equa-
tion

ω3 − 18
5
ω2 + 24

5
ω − 8

5
= 0 .

This equation has only one real root that can be found analyt-
ically or approximated either numerically or graphically. Pro-
vided I did not make any mistakes, the cubic formula gives this
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root as

ωo =
6

5
− γ

5
+

4

5γ
,

where γ =
(

44 + 20
√

5
)

1

3

.

A very rough estimate shows that this number is close to 1
2
.

Because ωo is only positive value of ω that allows λ ∈ sp
(

G(ω)
)

to pass through the unit circle, it is clear that for ω ∈ (0, ωo)
we know that every eigenvalue of G(ω) lies inside the unit cir-
cle, while for ω ∈ [ωo,∞) there is a pair of eigenvalues that lie
outside the unit circle. We also know that for ω ≤ 0 there is at
least one eigenvalue that lies outside the unit circle. We there-
fore conclude that the SOR-method converges for ω ∈ (0, ωo)
and diverges otherwise.

(4) Let A ∈ R
N×N be self-adjoint and positive definite with respect

to a distinguished real inner product ( · | · ) over RN . Let b ∈
RN . Define

f(y) = (y |Ay) − 2(b | y) for every y ∈ RN .

Consider the steepest descent method to solve Ax = b:

choose an initial iterate x(0) ∈ RN ;

compute the initial residual r(0) = b − Ax(0) ;

αn =

(

r(n) | r(n)
)

(

r(n) |Ar(n)
) ;

x(n+1) = x(n) + αnr
(n) ;

r(n+1) = r(n) − αnAr(n) .

Let e(n) = x(n) − x be the error of the nth iterate.
(a) Let κ be the condition number of A. Prove that

(y |Ay)(y |A−1y)

(y | y)2
≤ (κ + 1)2

4κ
for every nonzero y ∈ RN .

Hint: Diagonalize, then maximize.
(b) Prove that

∥

∥e(n+1)
∥

∥

2

A
∥

∥e(n)
∥

∥

2

A

= 1 −
(

r(n) | r(n)
)

(

r(n) |Ar(n)
)

(

r(n) | r(n)
)

(

r(n) |A−1r(n)
) ,

where ‖ · ‖A denotes the A-norm.
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(c) Use the above inequality to derive a bound on
∥

∥e(n)
∥

∥

A
in

terms of κ and
∥

∥e(0)
∥

∥

A
. Compare the result with the sim-

ilar estimate derived in class for the conjugate gradient
method.

Solution of Part (a). The lower bound is easy. For example,
we can use the fact that for any nonzero y ∈ RN and any α ∈ R

0 ≤
(

y + αA−1y | y + αA−1y
)

A

= (y |Ay) + 2α(y | y) + α2
(

y |A−1y
)

.

Because A is positive definite and y is nonzero, it follows that
(y |Ay), (y | y), and (y |A−1y) are all positive. The right-hand
side above is therefore a strictly convex quadratic function of
α. Minimizing this function over α yields

0 ≤ (y |Ay)− (y | y)2

(

y |A−1y
) ,

from which the lower bound follows.
To obtain the upper bound we evaluate

max
{

(y |Ay)(y |A−1y) : y ∈ R
N , (y | y) = 1

}

.

To do this we use the method of Lagrange multipliers. Consider
the function

F (y, λ) = 1
2
(y |Ay)(y |A−1y) − λ[(y | y) − 1] .

One then sets the derivatives of F to zero:

0 = ∇yF (y, λ) = (y |A−1y)Ay + (y |Ay)A−1y − 2λy ,

0 = ∂λF (y, λ) = 1 − (y | y) .

By taking the inner product of the first equation with y and
using the second equation to evaluate (y | y), we find that

λ = (y |Ay)(y |A−1y) .

By multiplying the first equation by A and using the above
equation to eliminate λ, it can be expressed as

(1) A2y − 2κ1Ay +
κ1

κ−1

y = 0 ,

where the scalars κ1 and κ−1 are defined by

κ1 = (y |Ay) , κ−1 = (y |A−1y) .

Because A is positive definite, both κ1 and κ−1 are positive.
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Equation (1) will have a solution if and only if zero is in
the spectrum of the matrix q(A) where q(λ) is the quadratic
polynomial given by

q(λ) = λ2 − 2κ1λ +
κ1

κ−1
.

By the Spectral Mapping Theorem

sp
(

q(A)
)

=
{

q(λ) : λ ∈ sp(A)
}

.

So there must be at least one λ ∈ sp(A) such that q(λ) = 0.
This means that q(λ) must have the factored form

q(λ) = (λ − λ1)(λ − λ2) .

where at least one of λ1 and λ2 must be in sp(A). By comparing
this factor form with the definition of q(λ), we read off that

κ1 =
λ1 + λ2

2
,

κ1

κ−1

= λ1λ2 .

Because κ1 and κ−1 are positive, it follows that both λ1 and λ2

are positive. We can then express κ1 and κ−1 in terms of λ1

and λ2 as

κ1 =
λ1 + λ2

2
, κ−1 =

λ1 + λ2

2λ1λ2
.

It therefore follows from the definition of κ1 and κ−1 that a unit
vector y satisfying q(A)y = 0 must also satisfy

(2)
(y |Ay) =

λ1 + λ2

2
,

(

y |A−1y
)

=
λ1 + λ2

2λ1λ2

.

Every such y will be a critical point of F (y). Moreover, the set
of all such y will be all the critical points of F (y).

There are three cases to consider: either λ1 ∈ sp(A) and
λ2 /∈ sp(A), or λ2 = λ1 ∈ sp(A), or λ1, λ2 ∈ sp(A) and λ1 <
λ2. In each case we seek a unit vector y such that q(A)y = 0
and satisfies (2). We will consider these three cases separately
below.

First, consider the case where λ1 ∈ sp(A) and λ2 /∈ sp(A).
Because

0 = q(A)y = (A − λ2I)(A − λ1I)y ,

while (A − λ2I) is invertible, we conclude that

(A − λ1I)y = 0 .
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Hence, y must be a unit eigenvector of A associated with λ1. A
direct calculation then shows that

(y |Ay) = λ1 ,
(

y |A−1y
)

=
1

λ1

.

It follows immediately from (2) that

λ1 =
λ1 + λ2

2
,

whereby λ2 = λ1 ∈ sp(A) — a contradiction. Therefore this
case cannot occur.

Next, consider the case where λ2 = λ1 ∈ sp(A). Because

0 = q(A)y = (A − λ1I)2y ,

the vector y must be a unit eigenvector of A associated with λ1.
A direct calculation then shows that

(y |Ay) = λ1 ,
(

y |A−1y
)

=
1

λ1
,

which is consistant with (2). Therefore every unit eigenvector
of A is a critical point of F (y) over the unit sphere. Its critical
value is

(y |Ay)(y |A−1y) = λ1 λ−1
1 = 1 .

It therefore follows from our lower bound that such a critical
point must be a minimum of F (y).

Finally, consider the case where λ1, λ2 ∈ sp(A) and λ1 < λ2.
Because

0 = q(A)y = (A − λ2I)(A − λ1I)y ,

the vector y must have the form

y = α1v1 + α2v2 ,

where α1, α2 ∈ R while v1 and v2 are unit eigenvectors of A
associated with λ1 and λ2 respectively. Because v1 and v2 are
orthogonal unit vectors while y is a unit vector, we know that

α 2
1 + α 2

2 = 1 .

A direct calculation then shows that

(y |Ay) = λ1α
2
1 + λ2α

2
2 ,

(

y |A−1y
)

=
1

λ1

α 2
1 +

1

λ2

α 2
2 .
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Therefore (2) will be satisfied provided

λ1α
2
1 + λ2α

2
2 = λ1

1

2
+ λ2

1

2
,

1

λ1
α 2

1 +
1

λ2
α 2

2 =
1

λ1

1

2
+

1

λ2

1

2
.

Because 0 < λ1 < λ2, one sees that

det

(

λ1 λ2

λ−1
1 λ−1

2

)

=
λ 2

1 − λ 2
2

λ1λ2
6= 0 .

We can therefore conclude that

α 2
1 = α 2

2 =
1

2
.

Therefore every vector of the form

y =
v1 + v2√

2

is a critical point of F (y) over the unit sphere whenever v1

and v2 are unit eigenvectors of A corresponding to different
eigenvalues λ1 and λ2. Its critical value is

(y |Ay)(y |A−1y) =
(λ1 + λ2)

2

4λ1λ2

=

(

1 +
λ2

λ1

)2

4
λ2

λ1

.

This is an increasing function of λ2/λ1, so it will take its max-
imum value when λ1 is the smallest eigenvalue of A while λ2 is
the largest eigenvalue of A. In that case

(y |Ay)(y |A−1y) =
(κ + 1)2

4κ
.

As this is the largest value taken by any critical point, we con-
clude that

max
{

(y |Ay)(y |A−1y) : y ∈ R
N , (y | y) = 1

}

=
(κ + 1)2

4κ
.

The result follows by scaling. �

Solution of Part (b). Because the error of the nth iterate is
e(n) = x(n)−x, the residual of the nth iterate is r(n) = b−Ax(n),
while Ax = b, we see that

Ae(n) = A
(

x(n) − x
)

= Ax(n) − Ax = Ax(n) − b = −r(n) .
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Hence, e(n) = −A−1r(n). It thereby follows from the definition
of the A-norm that
∥

∥e(n)‖ 2
A =

(

e(n) | e(n)
)

A
=

(

e(n) |Ae(n)
)

=
(

A−1r(n) | r(n)
)

.

For the steepest descent method we have

r(n+1) = r(n) − αnAr(n) ,

where αn is given by

αn =

(

r(n) | r(n)
)

(

r(n) |Ar(n)
) .

Hence, we see that
∥

∥e(n+1)‖ 2
A =

(

A−1r(n+1) | r(n+1)
)

=
(

A−1[r(n) − αnAr(n)] | [r(n) − αnAr(n)]
)

=
(

A−1r(n) | r(n)
)

− 2αn

(

r(n) | r(n)
)

+ α 2
n

(

r(n) |Ar(n)
)

=
(

A−1r(n) | r(n)
)

−
(

r(n) | r(n)
)2

(

r(n) |Ar(n)
) .

Upon dividing both sides above by the quantity
(

A−1r(n) | r(n)
)

while recalling that this quantity is equal to
∥

∥e(n)‖ 2
A, we obtain

∥

∥e(n+1)
∥

∥

2

A
∥

∥e(n)
∥

∥

2

A

= 1 −
(

r(n) | r(n)
)

(

r(n) |Ar(n)
)

(

r(n) | r(n)
)

(

r(n) |A−1r(n)
) ,

�

Solution of Part (c). By the result of part (a) we know that
(

r(n) | r(n)
)

(

r(n) |Ar(n)
)

(

r(n) | r(n)
)

(

r(n) |A−1r(n)
) ≥ 4κ

(κ + 1)2
.

When this is combined with the result from part (b) we obtain
∥

∥e(n+1)
∥

∥

2

A
∥

∥e(n)
∥

∥

2

A

≤ 1 − 4κ

(κ + 1)2
=

(κ + 1)2 − 4κ

(κ + 1)2

=
(κ − 1)2

(κ + 1)2
.

Hence, taking square roots yields

∥

∥e(n+1)
∥

∥

A
≤ κ − 1

κ + 1

∥

∥e(n)
∥

∥

A
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By induction we therefore arrive at the convergence estimate

∥

∥e(n)
∥

∥

A
≤

(

κ − 1

κ + 1

)n
∥

∥e(0)
∥

∥

A
.

The similar estimate derived in class for the conjugate gradi-
ent method is

∥

∥e(n)
∥

∥

A
≤ 2

(√
κ − 1√
κ + 1

)n
∥

∥e(0)
∥

∥

A
.

For large κ this convergence factor behaves like
√

κ − 1√
κ + 1

= 1 − 2√
κ

+ O
(

κ
)

,

while for large κ the steepest descent convergence factor behaves
like

κ − 1

κ + 1
= 1 − 2

κ
+ O

(

κ−2
)

.

Because
(

1 − 2

κ
+ O

(

κ−2
)

)κ
−

1
2

∼ 1 − 2√
κ

+ O
(

κ
)

,

it would therefore take on the order of κ− 1

2 iterations of the
steepest descent to obtain the same estimate on the error as
that for one iteration of the conjugate gradient method. �

(5) Let A be the symmetric tridiagonal real matrix

(3) A =

















a0 b1 0 · · · 0

b1 a1 b2
. . .

...

0 b2 a2
. . . 0

...
. . .

. . .
. . . bn

0 · · · 0 bn an

















.

Show that A is irreducible if and only if every bm is nonzero.

Solution. If bm = 0 for some m < n then A has the reducible
form

A =

(

A1 0
0 A2

)

,

where A1 ∈ Rm×m and A2 ∈ R(n−m)×(n−m) are given by

A1 =







a0
. . .

. . .
. . . bm−1

bm−1 am−1






, A2 =







am bm+1

bm+1
. . .

. . .
. . . an






,
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where all terms off the three main diagonals are zero. Therefore
A is not irreducible.

Now suppose every bm is nonzero. The graph associated with
A is

0 ↔ 1 ↔ · · · ↔ n − 1 ↔ n

Because there is a directed path between any two nodes on this
graph, A is therefore irreducible. �

(6) Let A be an irreducible symmetric tridiagonal real matrix of
the form (3). Let {pm(x)}n+1

m=0 be the sequence of polynomials
generated by

p0(x) = 1 , p1(x) = (x − a0) ,

pm+1(x) = (x − am)pm(x) − b 2
mpm−1(x) for m = 1, · · · , n .

Let π0 = 1, and πm = bmπm−1 for every m = 1, · · · , n. Let
qm(x) = pm(x)/πm for every m = 0, · · · , n.
(a) Show that pn+1(x) has n + 1 simple roots {xk}n+1

k=0.
(b) Show that V −1AV is diagonal where

V =













q0(x0) q0(x1) q0(x2) · · · q0(xn)
q1(x0) q1(x1) q1(x2) · · · q1(xn)
q2(x0) q2(x1) q2(x2) · · · q2(xn)

...
...

...
. . .

...
qn(x0) qn(x1) qn(x2) · · · qn(xn)













.

Solution of Part (a). To show that pn+1(x) has n + 1 simple
roots, we prove more. Specifically, we will prove by induction
that for every m = 1, · · · , n + 1 the mth degree polynomial
pm(x) defined above m simple roots that strictly interlace with
the m − 1 simple roots of pm−1(x).

It is clear that p0(x) = 1 has no roots while p1(x) = (x− a0)
has one simple root. The interlacing is therefore trivially true.
The assertion is thereby holds for m = 1.

We now suppose the assertion holds for m. If we denote the
roots of pm(x) by

x
(m)
1 < x

(m)
2 < · · · < x

(m)
m−1 < x(m)

m ,

and the roots of pm−1(x) by

x
(m−1)
1 < x

(m−1)
2 < · · · < x

(m−1)
m−2 < x

(m−1)
m−1 .
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then the fact these strictly interlace means

(4)
x

(m)
1 < x

(m−1)
1 < x

(m)
2 < x

(m−1)
2 < x

(m)
3 < · · ·

· · · < x
(m−1)
m−2 < x

(m)
m−1 < x

(m−1)
m−1 < x(m)

m .

When this fact is combined with the fact that pm−1(x) ∼ xm−1

as |x| → ∞ then one obtains

(5) sign
(

pm−1

(

x
(m)
k

))

= (−1)m−k for every k = 1, · · · , m .

We now use this fact to do a sign analysis of pm+1(x).

The defining relation of pm+1(x) along with the fact x
(m)
k is a

root of pm(x) yields

pm+1

(

x
(m)
k

)

= −b 2
mpm−1

(

x
(m)
k

)

.

Because A is irreducible, the previous problem shows that bm 6=
0. This fact combined with the above relation implies

sign
(

pm+1

(

x
(m)
k

))

= (−1)m−k+1 for every k = 1, · · · , m .

This sign analysis along with the fact that pm+1(x) ∼ xm+1 as
|x| → ∞, shows that pm+1(x) must have at least one root in
each of the n + 1 intervals

(

−∞, x
(m)
1

)

,
(

x
(m)
1 , x

(m)
2

)

, · · · ,
(

x
(m)
m−1, x

(m)
m

)

,
(

x(m)
m ,∞

)

.

Therefore pm+1(x) is an (m+1)th degree polynomial with m+1
simple roots that interlace with the m simple roots of pm(x). �

Solution of Part (b). To show that V −1AV is diagonal, first
observe that the recursion relations defining the polynomials
pm(x) can be expressed as

(6)
















x − a0 −1 0 · · · 0

−b2
1 x − a1 −1

. . .
...

0 −b2
2 x − a2

. . . 0
...

. . .
. . .

. . . −1
0 · · · 0 −b2

n x − an





























p0(x)
p1(x)
p2(x)
· · ·

pn(x)













=













0
0
· · ·
0

pn+1(x)













.

Let Π be the diagonal matrix defined by

Π =











π0 0 · · · 0

0 π1
. . .

...
...

. . .
. . . 0

0 · · · 0 πn











.
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Observe that

A = Π−1

















a0 1 0 · · · 0

b2
1 a1 1

. . .
...

0 b2
2 a2

. . . 0
...

. . .
. . .

. . . 1
0 · · · 0 b2

n an

















Π ,













p0(x)
p1(x)
p2(x)
· · ·

pn(x)













= Π













q0(x)
q1(x)
q2(x)
· · ·

qn(x)













.

Hence, equation (6) can therefore be expressed as

A













q0(x)
q1(x)
q2(x)
· · ·

qn(x)













= x













q0(x)
q1(x)
q2(x)
· · ·

qn(x)













− 1

πn













0
0
· · ·
0

pn+1(x)













.

Now let {xk}n+1
k=0 be the n+1 simple roots of pn+1(x) established

by Part (a). The above relation then shows that AV = V Λ
where Λ is the diagonal matrix

Λ =











x0 0 · · · 0

0 x1
. . .

...
...

. . .
. . . 0

0 · · · 0 xn











.

The result will therefore follow upon showing that V is invert-
ible.

Suppose V is not invertible. Then there exists a nonzero
vector w such that wTV = 0. Let w = (w0, w1, · · · , wn)

T . Then

0 = wTV =
(

q(x0) q(x1) · · · q(xn)
)

,

where q(x) is the polynomial defined by

q(x) =
n

∑

m=0

wmqm(x) .

Because q(x) is a polynomial of degree n or less that vanishes at
n+1 points, it must be identically zero. But because each pm(x)
is a monic polynomial of degree m, the polynomials {pm(x)} are
linear independent. Because qm(x) = pm(x)/πm, the polynomi-
als {qm(x)} are also linear independent. It follows that wm = 0
for every m = 0, · · · , n. But this contradicts the fact that w is
nonzero. Therefore V is invertible. �
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(7) Given any self-adjoint matrix A ∈ RN×N and any unit vector
u ∈ RN , use the Lanczos algorithm to construct an orthogonal
matrix Q such that the first column of Q is u and that QT AQ
is tridiagonal.

Solution. The Lanczos algorithm constructs a sequence of vec-
tors p(n) as

(7)
p(1) = Ap(0) − κ0p

(0) ,

p(n+1) = Ap(n) − κnp
(n) − µnp

(n−1) for n = 1, 2, · · · ,

where the coefficients κn and µn are given by

κn =

(

p(n) |Ap(n)
)

(

p(n) | p(n)
) for n = 0, 1, · · · ,(8)

µn =

(

p(n) | p(n)
)

(

p(n−1) | p(n−1)
) for n = 1, 2 · · · .(9)

The algorithm halts as soon as p(n) = 0 for some n. The vectors
p(n) satisfy the orthogonality relation

(10)
(

p(m) | p(n)
)

= 0 for every m < n .

It folows from (9) that
∥

∥p(n)
∥

∥

2
= πn

∥

∥p(0)
∥

∥

2
,

where π0 = 1 and πn = µnπn−1, which will be positive until
p(n) = 0 for some n.

Now apply the Lanczos algorithm with p(0) = u to construct
p(n) until p(n1) = 0. For n = 0, · · · , n1 − 1 set

u(n) =
1√
πn

p(n) .

If n1 = N + 1 then you are done. Otherwise let u(n1) be any
unit vector that is orthogonal to

{

u(0), · · · , u(n1−1)
}

and apply

the Lanczos algorithm with p(0) = u(n1) to construct p(n) until
p(n2) = 0. For n = 0, · · · , n2 − 1 set

u(n1+n) =
1√
πn

p(n) .

Repeat this until n1 + · · · + nm = N + 1.
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(8) Recall that A ∈ CN×N is called normal whenever A∗A = AA∗.
Show that A is normal and invertible if and only if there exists
a unitary matrix U and a self-adjoint, positive definite matrix
P such that A = UP = PU .

Solution. First suppose there exists a unitary matrix U and
a self-adjoint, positive definite matrix P such that A = UP =
PU . Because both U and P are invertible, it follows that A =
UP = PU is also invertible. Moreover, because

A∗A = (UP )∗UP = PU∗UP = P 2 ,

while
AA∗ = PU(PU)∗ = PUU∗P = P 2 ,

it follows that A∗A = P 2 = AA∗. Therefore A is normal and
invertible.

Now suppose A is normal and invertible. Because A is normal
there exists a unitary matrix V ∈ CN×N and a diagonal matrix
Λ such that A = V ΛV ∗. Then

Λ =











λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λN











,

where the λj are the eigenvalues of A. Because A is invertible
every λj is nonzero.

Let |Λ| and Σ be the diagonal matrices given by

|Λ| =











|λ1| 0 · · · 0

0 |λ2| . . .
...

...
. . .

. . . 0
0 · · · 0 |λN |











, Σ =











σ1 0 · · · 0

0 σ2
. . .

...
...

. . .
. . . 0

0 · · · 0 σN











,

where σj = λj/|λj| for j = 1, · · · , N . Clearly, |Λ| is self-adjoint
and positive definite, Σ is unitary, while

Λ = Σ|Λ| = |Λ|Σ .

Let P = V |Λ|V ∗ and U = V ΣV ∗. Clearly, P is self-adjoint and
positive definite and U is unitary. Moreover,

PU = V |Λ|V ∗V ΣV ∗ = V ΛV ∗ = A ,

and
UP = V ΣV ∗V |Λ|V ∗ = V ΛV ∗ = A ,

so that A = UP = PU . �
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(9) Let A ∈ RN×N be normal and invertible. Let {An}∞n=0 be the
sequence of N ×N matrices constructed recursively by the QR-
Method: A0 = A, An = QnRn, and An+1 = RnQn, where every
Qn is orthogonal and every Rn is upper triangular with positive
diagonal entries. Show that every An is normal. (Hint: The
result of the previous problem might be helpful.)

Solution. We will prove that every An is normal and invertible
by induction on n. Because A0 = A, the assertion holds for
n = 0 by hypothesis. Now suppose the assertion holds for n.
We will show it holds for n + 1.

Because An ∈ RN×N is invertible there exists unique matrices
Qn and Rn such that Qn is orthogonal, Rn is upper triangular
with positive diagonal entries, and

An = QnRn .

Because An ∈ RN×N is normal and invertible, by applying the
result of the previous problem to the real setting, there exists an
orthogonal matrix Un and a symmetric, positive definite matrix
Pn such that

UnPn = PnUn = An = QnRn .

Because Q−1
n = QT

n , the above relations lead to the formulas

Rn = QT UnPn , and Rn = QT PnUn .

Because An+1 = RnQn, the above formulas show that

An+1 = RnQn = QT
nPnUnQn = QT

nPnQnQT
nUnQn

=
(

QT
nPnQn

)(

QT
nUnQn

)

= Pn+1Un+1 ,

An+1 = RnQn = QT
nUnPnQn = QT

nUnQnQ
T
nPnQn

=
(

QT
nUnQn

)(

QT
nPnQn

)

= Un+1Pn+1 .

where we have defined Un+1 = QT
nUnQn and Pn+1 = QT

nPnQn.
It is clear that Un+1 is orthogonal and that Pn+1 is symmet-
ric and positive definite. Because the above calculation shows
that An+1 = Un+1Pn+1 = Pn+1Un+1, the result of the previous
problem implies that An+1 is normal and invertible. �

Remark. This result is one of the steps in the proof that the
QR-method converges when A is normal.
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(10) Let H0 ∈ RN×N and H(t) satisfy the isospectral flow initial-
value problem

dH

dt
= JH − HJ , H(0) = H0 ,

where J(t) ∈ RN×N such that J(t)T = −J(t) for every t ∈ R.
Show that if H0 is normal then so is H(t) for every t ∈ R.

Solution. We will show that H(t)T H(t) = H(t)H(t)T for every
t ∈ R. By taking the transpose of the isospectral flow initial-
value problem one sees that H(t)T satisfies

dHT

dt
=

(

JH − HJ
)T

= HTJT − JT HT

= JHT − HTJ , H(0)T = HT
0 .

Upon combining the initial-value problems governing H(t) and
H(t)T one sees that H(t)TH(t) is governed by

dHTH

dt
=

dHT

dt
H + HT dH

dt
=

(

JHT − HT J
)

H + HT (JH − HJ)

= JHT H − HT JH + HTJH − HT HJ

= JHT H − HT HJ , H(0)TH(0) = HT
0 H0 .

Similarly, one sees that H(t)H(t)T is governed by

dHHT

dt
=

dH

dt
HT + H

dHT

dt
= (JH − HJ)HT + H

(

JHT − HT J
)

= JHHT − HJHT + HJHT − HHT J

= JHHT − HHTJ , H(0)H(0)T = H0H
T
0 .

Because H0 is normal one knows that HT
0 H0 = H0H

T
0 , whereby

H(t)T H(t) and H(t)H(t)T are governed by the same initial-
value problem. Because the initial-value problem has a unique
solution, it follows that H(t)TH(t) = H(t)H(t)T for every t ∈
R. Hence, H(t) is normal for every t ∈ R. �


