Take Home Exam: AMSC/CMSC 666
due 5pm, Wednesday, 15 December
SOLUTIONS

(1) Let Qa(f) denote quadrature over an interval by the trapezio-
dal rule with uniform subintervals of length A. Use the Euler-
Maclaurin formula to extrapolate Qa(f), Q2a(f), @3a(f), and
Qosa(f) to obtain an eighth order accurate quadrature.

Solution. Let I(f) denote the exact value of the integral. For
f € C1° the Euler-Maclaurin asymptotic formula then states
that

Qal(f) = I(f) + asd® + aud* + agd® + O(A®).
It follows that
Qan(f) = I(f) + 4z0® + 420,6" + 42a68° + O(A®)

= I(f) + 4026” + 160u8* + 64as0° + O(A®),
Qsalf) = I(f) + 920 + 9*s0* + 9 d° + O(A®)
= I(f) + 9026 + 8Llasd* 4+ 729066° + O(A®),
Qoa(f) = I(f) + 36026 + 36°6* + 36%a60° + O(A®)
= I(f) + 36020” 4 12960146* + 466560,60° + O(A®),

There are many ways to extrapolate. About the simplest is to
set

Q(f) = w1Qa(f) + waQaa(f) + wsQsa(f) + weQealf)

where wy, wsy, w3, and wg, satisfy

1 1 1 1 wy 1
1 4 9 36 wy | |0
1 16 81 1296 ws ] |0
1 64 729 46656 We 0
The solution of this system is
1296 567 112 1
wl—m, wg——%, 'LUg—m, ’LU@——%.
This can be obtained numerically, or analytically. 0

(2) Derive the one-, two-, three-, and four-point Gaussian quadra-
ture formulas such that

[ star = éf(xj)w

Give bounds on the error of these formulas.
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Solution. First, the associated orthogonal monic polynomials
through fourth degree are

po(z) =1, pi(z) ==z, po(z) = 2% —

ol

Y

3

pa(r) =2 — ?937 pa(z) = !

5
_ 10,2, %
9 L +21.

The roots of the polynomials p;, ps, ps3, and py4 respectively are
3 5
{O}? {j: g}a {07i\/;}a
5 42 /10
{i\/§i§\/7}-

These are the quadrature points for the one-, two-, three-, and
four-point Gaussian quadrature formulas respectively.
The one-point Gaussian quadrature formula is

/1 f(a) x*da ~ f(0)wr,

where the weight w; is determined by

1
wy = / 22 dr = %
-1
Hence, w; = %.
The two-point Gaussian quadrature formula is

[ s@atar = (= D+ 1D,

where the weights w; and wy are determined as follows. By
symmetry one sets w; = we = w. This insures that every odd
function will be integrated exactly. Then w is determined by

1
2w:/ Izdllf:%.
-1

_ 1
Hence, Wy =wy=w = 3.

The three-point Gaussian quadrature formula is

/ J@)ade ~ F(— 2w+ FO)ws + F(/ 2w,

where the weights wq, ws, and w3 are determined as follows.
By symmetry one sets w; = ws = w. This insures that every

[SV1] .}
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odd function will be integrated exactly. Then w and w, are
determined by

1
wg—l—Qw:/ xdezg,

—1

1
5. 49,2
27w—/ xd:E—5.

—1
Hence, w; = w3 = w = -~ while wy = &
et 3 25 2775

The four-point Gaussian quadrature formula is

/_zf(:c)xzdx%f(—\/g+§\/§>w1+f<— 8—% 1_70>w2
(3= 22wy + £ (154 22,

where the weights wy, wq, w3, and wy are determined as follows.
By symmetry one sets w; = wy = wy and wy = w3 = w_. This
insures that every odd function will be integrated exactly. Then
w, and w_ are determined by

1
2w_+2w+:/1x2dx:§,
5 2 /10
2(5—5\/7>w—+
1
2(8—%%\/%)1@:/ x4d$:%.
-1

These equations reduce to

1
w- +wy =3,

— =1 /7
Wy —wW- = 54/ 10 -

Hence, w; = wy = wy = %+%,/% while wy = w3 = w_ =

1 7

1
6 30\ 10°

When f € C?"([—1,1]) the error of the n-point Gaussian
quadrature formula can be generally bounded by

109 = QulH] < 177 / (o).



The square integrals of the polynomials p;, ps, p3, and ps may
be computed using the fact that

1 1
/ pu(2)? 2 dz = / po(x) 2" de .
—1 —1
One finds that
1
/ 22%dr =
—1

1
plafads = [ atar =2,

! 2 2d ' 6 34d 8
/_pg(x) x z—/_lx —grde = =,
1
plafatde = [ o

-1

2
zidr =2

1

1
/ )2 22de =
—1

! ! 128
/_ pa(z)? 2%dr = /_ o' — 0% 4 240w 43 60

1 1

5,.6 _
—7$dl'—m,

One thereby obtains the bounds
1)~ QD] < 2172
10) - Qul)] < %Wuw,
17
179 -

‘I(f) - 39 690

() = Qu(f)] < 13, 752 585

(3) We wish to solve Az = b iteratively where

1 2 =2
A=(11 1
2 2 1

Show that the Jacobi method converges while the Gauss-Seidel
method does not. For what values of the parameter w does the
SOR method converge?

Solution. The matrix A decomposes as A = D — L — U where
0 0 0 0 -2 2

D=I, L=|-1 0 o, v=[0 0o -1
2 -2 0 0 0 0



The growth matrix for the Jacobi method is

0 -2 2
G;y=DYL+U)=|[-1 0 -1
-2 -2 0

Its characteristic polynomial is given by
ps(A) =det (M —Gy) =N’

Hence, its spectrum is given by sp(G,;) = {0} and its spectral
radius is p(G;) = 0. Because p(G;) < 1 the Jacobi method
converges.

The growth matrix for the Gauss-Seidel method is

Gas = (D — L)_lU

-1

1 00 0 -2 2
=1110 0 0 -1
2 21 0 0 0
10 0 0 -2 2
=|1-1 1 0 0 0 -1
0 -2 1 0 0 0
0 -2 2
=0 2 -3
0 0 2

Because this matrix is upper triangular, one can read off that
its spectrum is given by sp(Ggs) = {0,2} and that its spectral
radius is p(Ggs) = 2. Because p(Ggs) > 1 the Gauss-Seidel
method diverges.

The growth matrix for the SOR method is

G(w)=(D—wL) (1 -w)D+wU].
Then A € sp(G(w)) if and only if

0 = det (\] — G(w))
=det (A — (D —wL)'[(1 = w)D + wU]))
=det (D —wL)™")det (A +w—1)D — \wL —wU) .



Hence, A\ € sp (G(w)) if and only if
0=det (A +w—1)D - wL —wU)

Atw-—1 2w —2w
= det Aw Atw-—1 w
2 \w 2 \w Atw-—1

= A4+ w—1)% — 43X\ + 43\
=N — (33w +4w*)N? + (3(1 —w)? + 4PN — (1 —w)?.

We must identify those values of w € R for which all the roots
of this cubic equation lie within the unit circle [A| < 1.

Because (1 — w)? is the product of these roots, a necessary
condition that they all lie within the unit circle |A| < 1 is that
|1—w| < 1. This means that w must be restricted to the interval
(0,2).

Because (3 — 3w + 4w?) is the product of these roots, a nec-
essary condition that they all lie within the unit circle |A\| < 1
is that |3 — 3w +4w?| < 3. Because w is already retricted to the
interval (0, 2), this new requirement means w must be restricted

to the interval (0, ?)

Notice that the restriction w € (0, @) contains the result of
Part (b) because the Gauss-Seidel Method is the special case
w = 1. Indeed, in that case the cubic equation is

0=\ —4)\2 4+ 4\,

which has one simple root A = 0 and one double root A\ = 2.
Now let us assume that 0 < w is small. An asymptotic anal-

ysis shows that the polynomial has one simple simple root and

a conjugate pair of simple complex roots with the expansions

A=1-w—ow(dw)3 —i—O(w%),

where o is one of the three cube roots of unity, ¢ = 1, ¢ =
—% + i@, or o = —% — z@ It is easily checked that when w
is sufficiently small all of these roots lie within the unit circle
|A| < 1.

Because the roots of the cubic equation depend continuously
on w, and because when w > 0 is small all these roots these

roots lies within the unit circle while when w > ? at least one
root lies outside the unit circle, there must be some w € (0, ?]

such that at least one root lies on the unit circle. At such an w
there are three possibilities: either 1 is a root, —1 is a root, or



7

there is a conjugate pair of roots {o,5} with |o| = 1. We will
consider each of these possibilities.

If 1 is a root of the cubic equation for some w then, by setting
A = 1 in the cubic equation, we see that w?® = 0. Therefore this
possibility does not occur.

If —1 is a root of the cubic equation for some w then, by

setting A = —1 in the cubic equation, we see that
(w—2)% =8uw?.
The only real root of this equation is w = —2. Therefore this

possibility does not occur.
The only possiblity left is that there must be some w € (0, @]

with a conjugate pair of complex roots {o,5} with |¢| = 1 and
a third root A, in (—1,1). These roots must satisfy
Mo+0+6=3—3w+ 4w,
L+ X(0+7) =3(1 —w)® + 4w,
Ao = (1 —w)?.

Upon using the third equation above to eliminate ), from the
first two equations, we obtain

c+6=3-3w+4w’— (1 —w)?
=2 — 3w? + 507,
(1—w)P(o+05)=31—-w)®+4w® -1
=2 — 6w + 3w® + 4w’ .

Upon using the first equation above to eliminate o + & from the
second equation, we obtain

(1 —w)*(2 = 3w? 4+ 5w®) =2 — 6w + 3w® + 4w’

After expanding the left-hand side above and taking advantage
of some nice cancellations, this equation becomes

8w? — 24w* + 18w° — 5w = 0.

We must therefore find w € (0, @] that satisfies the cubic equa-
tion
3_ 18 2 8 _ (.

24
W T w5 =

This equation has only one real root that can be found analyt-
ically or approximated either numerically or graphically. Pro-
vided I did not make any mistakes, the cubic formula gives this

w



root as
4

a )
i
where v = (44 + 20\/5) L

L
Wo = = —
5

S

A very rough estimate shows that this number is close to %

Because w, is only positive value of w that allows A € sp(G(w))
to pass through the unit circle, it is clear that for w € (0, w,)
we know that every eigenvalue of G(w) lies inside the unit cir-
cle, while for w € |w,, 00) there is a pair of eigenvalues that lie
outside the unit circle. We also know that for w < 0 there is at
least one eigenvalue that lies outside the unit circle. We there-
fore conclude that the SOR-method converges for w € (0,w,)
and diverges otherwise.

(4) Let A € RV*Y be self-adjoint and positive definite with respect
to a distinguished real inner product (-|-) over RY. Let b €
RY. Define

fly) = (ylAy) —2(b|y) for every y € RY.
Consider the steepest descent method to solve Az = b:
choose an initial iterate 2(® € RV ;
compute the initial residual 7@ = b — Az ;
(P [rm)
(r | Arm) °
20 ) g ).

r ) = () o, Ap™)

oy =

Let e = 2" — 2 be the error of the n'" iterate.
(a) Let s be the condition number of A. Prove that

Wl AYwlA™y) _ (p+1)°
(y]y)? T 4k

Hint: Diagonalize, then maximize.
(b) Prove that

e B (P [ ) () | )

3 T A AT

for every nonzero y € RY .

where || - || 4 denotes the A-norm.
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(¢c) Use the above inequality to derive a bound on ||| 4 in

terms of k and He(o) H 4+ Compare the result with the sim-
ilar estimate derived in class for the conjugate gradient
method.

Solution of Part (a). The lower bound is easy. For example,
we can use the fact that for any nonzero y € RY and any a € R

0< (y+aAlyly+adly),
= (y| Ay) +2a(y|y) + o*(y | A7'y) .

Because A is positive definite and y is nonzero, it follows that
(v| Ay), (y|y), and (y| A~ty) are all positive. The right-hand
side above is therefore a strictly convex quadratic function of
«. Minimizing this function over « yields

(y|y)?
(y|A-ly)’

from which the lower bound follows.
To obtain the upper bound we evaluate

maX{(ylAy)(yM‘ly) Ly eRY, (yly) = 1}-

To do this we use the method of Lagrange multipliers. Consider
the function

Fy,A) = 5y Ay)(y | A7) = Ay [y) — 1].
One then sets the derivatives of F' to zero:
0=V, F(y,\) = (y| A" "y) Ay + (y | Ay) A~y — 2),
0=0F(y.\)=1-(yly)-

By taking the inner product of the first equation with y and
using the second equation to evaluate (y |y), we find that

A= (y] Ay)(y| Ay).

By multiplying the first equation by A and using the above
equation to eliminate A, it can be expressed as

0<(y|Ay) —

A%y — 2k Ay + Ly =0,
R—1

where the scalars k1 and k_; are defined by

k= (y|Ay), ko= (y|Ay).

Because A is positive definite, both x; and k_; are positive.
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Equation (1) will have a solution if and only if zero is in
the spectrum of the matrix g(A) where ¢(\) is the quadratic
polynomial given by

q(A) = N\ — 2k A + S
R—1
By the Spectral Mapping Theorem

sp(a(4)) = {a(A) : Aesp(A)}.
So there must be at least one A € sp(A) such that ¢(A\) = 0.
This means that ¢(A) must have the factored form
q(A) = (A= A)(A = Az).
where at least one of A\; and A must be in sp(A). By comparing
this factor form with the definition of g()), we read off that
o )\1 + )\2 K1

— = M.
9 ’ K, 112

R1

Because k; and k_; are positive, it follows that both A; and A,
are positive. We can then express k1 and x_; in terms of \;
and Ay as

- A1+ Ao o AL+ Ao

I R W W

It therefore follows from the definition of x; and x_; that a unit
vector y satisfying ¢(A)y = 0 must also satisfy

R1

(y\Ay)zAlgAQ,
_ A+ A

Aly) = .
(y| A™'y) By

Every such y will be a critical point of F(y). Moreover, the set
of all such y will be all the critical points of F(y).

There are three cases to consider: either A\; € sp(A) and
Ao & sp(A), or Ay = A1 € sp(A4), or A\j, A2 € sp(A4) and Ay <
A2. In each case we seek a unit vector y such that ¢(A)y = 0
and satisfies (2). We will consider these three cases separately
below.

First, consider the case where A\; € sp(A) and Ay ¢ sp(A).
Because

0=q(A)y=(A—-XI)(A-MIy,
while (A — A1) is invertible, we conclude that
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Hence, y must be a unit eigenvector of A associated with A;. A
direct calculation then shows that

_ 1
(y]| Ay) = A1, (y|A1y):)\—1.
It follows immediately from (2) that
At A
==,
whereby Ay = A1 € sp(A) — a contradiction. Therefore this

case cannot occur.
Next, consider the case where Ay = A\; € sp(A). Because

0=q(A)y = (A— )%,

the vector y must be a unit eigenvector of A associated with A;.
A direct calculation then shows that

_ 1
Wl =2, (A7) =+
which is consistant with (2). Therefore every unit eigenvector

of A is a critical point of F'(y) over the unit sphere. Its critical
value is

Al

WAy (A y) =M At =1,

It therefore follows from our lower bound that such a critical
point must be a minimum of F(y).

Finally, consider the case where A, Ay € sp(A) and \; < \s.
Because

0=q(A)y= (A= XI)(A- NIy,
the vector y must have the form
Y = U1 + QU

where aq,as € R while v; and v, are unit eigenvectors of A
associated with A\; and Ay respectively. Because v; and v, are
orthogonal unit vectors while y is a unit vector, we know that

af +a; =1.
A direct calculation then shows that
(y| Ay) = Maf + Xaay
L,

1
(y|Aly) = —af + -
2

A1
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maX{(y|Ay)(y|A‘1y) ry eRY, (yly) = 1} =

Therefore (2) will be satisfied provided

1 1
)\10&12+>\20é22 :)\1§+>\2§
Loy le 11,11
—Q —Q
)\1 1 )\2 2 )\1 )\2

Because 0 < A\ < \g, one sees that

At A AP = A
det ()\1_1 )\2_1) = 7£ 0.

Ao
We can therefore conclude that
1
2 _ 2 _

Therefore every vector of the form
V1 + V2
y =
V2
is a critical point of F(y) over the unit sphere whenever v,

and vy are unit eigenvectors of A corresponding to different
eigenvalues A\; and A\g. Its critical value is

Ao\ 2
1 _“
(A +2A)? ( +>\1)

4)\1 >\2 N )\2

(| Ay)(y| A7'y) =

This is an increasing function of Ao/, so it will take its max-
imum value when \; is the smallest eigenvalue of A while A, is
the largest eigenvalue of A. In that case

(v Ay)(y| A ly) = %-

As this is the largest value taken by any critical point, we con-
clude that
(k+1)2
4k
The result follows by scaling. O

Solution of Part (b). Because the error of the n " iterate is
e = z(™ —z the residual of the n” iterate is r(™ = b— Az
while Az = b, we see that

Ae™ = A(:E(") —) = Az™ — Az = Az™ —p = ™
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Hence, e = —A~1+( It thereby follows from the definition
of the A-norm that

€12 = (™ [ ™), = (e | Ae) = (A1 |0
For the steepest descent method we have

P ) g A

where «,, is given by
(r(n) | r(n))

oy =

Hence, we see that

A n+1 ‘7’ n+1))

A7 ™ — a, Ar™] | ™ — i, Ar™)))

_ A_l’f’(n) ‘ T’(n)) _ 20& ( (n) |T(” ) + 042( (n) ‘ AT(”))

He(n—l—l) fo —

—~ o~~~

A—l,r(n)‘,r(n)) _ (T | )2 _

Upon dividing both sides above by the quantity (A‘lr(”) | r(”))
while recalling that this quantity is equal to He(") |, we obtain

He("H)Hi L (P [ ) () | ()
o]y T AT G A
U
Solution of Part (c). By the result of part (a) we know that
(r) [ ) () | ) A

> .
(r(“) | Ar(”)) (r(“) | A—lr(”)) (k4 1)2
When this is combined with the result from part (b) we obtain

| HA< 4k  (k+1)2 -4k
R
(k—1)?
(k+1)2°
Hence, taking square roots yields
[e+0]], < Z= ]l
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By induction we therefore arrive at the convergence estimate

n k—1\"
el < (557 el

The similar estimate derived in class for the conjugate gradi-
ent method is

ey <2(LE1) e
VE+1 A

For large k this convergence factor behaves like

VE—1 2

~—=1-—+40

VE+1 NG +O(x).
while for large x the steepest descent convergence factor behaves
like

k—1_ . 2 9
/~€+1_1 /€+O(KJ )

Because
2 - Wt 2
(1-;4—0(% 2)) Nl—ﬁ—FO(Ii),

it would therefore take on the order of k™2 iterations of the
steepest descent to obtain the same estimate on the error as
that for one iteration of the conjugate gradient method. O

Let A be the symmetric tridiagonal real matrix

a b 0 -~ 0
by a; by :
A=10 b, a - 0
el e b,
o --- 0 b, a,

Show that A is irreducible if and only if every b, is nonzero.
Solution. If b,, = 0 for some m < n then A has the reducible

form Ao
A= (01 A2) :
where A; € R™™ and A, € R=™)*(=m) are given by
. A, bt
Ar=1-. - b 1 | Ay = | b1 - |,
S Loay
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where all terms off the three main diagonals are zero. Therefore
A is not irreducible.
Now suppose every b, is nonzero. The graph associated with
Ais
0 &« 1 < -+ < n—-1 < n

Because there is a directed path between any two nodes on this
graph, A is therefore irreducible. O

(6) Let A be an irreducible symmetric tridiagonal real matrix of
the form (3). Let {p,.(z)}“}, be the sequence of polynomials
generated by

po(x) =1,  pi(x) = (z —ao),
Prt1(2) = (T — ) pm(T) — D2ppm_1(z) form=1,--- ,n.

Let m9 = 1, and m,, = b, m,,_1 for every m = 1,--- ,n. Let
Gm () = pm(x) /7y for every m =0,---  n.
Show that p,.1(z) has n + 1 simple roots {z;}77;.

(a)
(b) Show that V1AV is diagonal where

qo(z0) qo(z1) qo(w2) -+ qo(wn)
a(zo) @(r1) q(r2) -+ q(w,)
V= | @) @) @) - g,
G(0) 0(@1) dalz) - aulen)

Solution of Part (a). To show that p,1(z) has n + 1 simple
roots, we prove more. Specifically, we will prove by induction
that for every m = 1,---,n + 1 the m'" degree polynomial
pm(z) defined above m simple roots that strictly interlace with
the m — 1 simple roots of p,,_1(x).

It is clear that po(z) = 1 has no roots while p;(z) = (z — ao)
has one simple root. The interlacing is therefore trivially true.
The assertion is thereby holds for m = 1.

We now suppose the assertion holds for m. If we denote the
roots of p,,(x) by

xgm) < xém) <0 < x;T_)l < xﬁ,T) )
and the roots of p,,_1(x) by
2D < g mD ol g mm )
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then the fact these strictly interlace means

A xgm) < xﬁ’”‘” < xgm) < :)sém_l) < x:())m) < e
( ) (m—1) (m) (m—1)

"'<J:m_2 <l’m_1<$m_1 <$£:Ln)

When this fact is combined with the fact that p,,_i(z) ~ 2™}
as |x| — oo then one obtains

(5) sign(pm_l(:clgm))) = (=1)™* forevery k=1,---,m.

We now use this fact to do a sign analysis of p,,11(z).

The defining relation of p,,1(x) along with the fact x,(cm) is a

root of p,,(x) yields

Pm+1 (x](fm)) = _b%pm—l(x]gm)) .

Because A is irreducible, the previous problem shows that b,, #
0. This fact combined with the above relation implies

sign (s (207)) = (<1 for every k=1, ,m.

This sign analysis along with the fact that p,,41(z) ~ 2™ as
|x| — oo, shows that p,,41(z) must have at least one root in
each of the n + 1 intervals
(- OO’me) ’ (Igm)’xgm) e (xi,ﬁn_)l,éfﬁT)) (2 00) .

Therefore p,,1(z) is an (m+1)™ degree polynomial with m+ 1
simple roots that interlace with the m simple roots of p,,(z). O
Solution of Part (b). To show that V~'AV is diagonal, first
observe that the recursion relations defining the polynomials
pm () can be expressed as

(6)

r—a -1 0 R 0
20 . . Po(x) 0
_bl r — aq —1 c. : p1($) 0
0 —b: r—ay . 0 pa(z) | =
. . ) . 1 0
d .. 0' —b'2 T —a pn(:L') pn—i—l(x)
Let II be the diagonal matrix defined by
m 0 -+ 0
I = 0 1 :
0
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Observe that

ao 1 0 -+ 0
) L pola) ()
b a1 . () ¢ (2)
A= H_l 0 b% a9 0 Ha p2(x) =1I QQ(ZZ')
0 -~ 0 V¥ a, Pa(2) an(2)
Hence, equation (6) can therefore be expressed as
Go() Go(x) 0
() @ (x) 1 0
Al @) | =2 | @) | —— [ -
. e T 0
Gn() Gn() Pnt1(2)

Now let {z} }7Z5 be the n+1 simple roots of p,1(z) established
by Part (a). The above relation then shows that AV = VA
where A is the diagonal matrix

o 0 -+ 0

A _ 0 T :

R 0

0 -~ 0 x
The result will therefore follow upon showing that V' is invert-

ible.
Suppose V' is not invertible. Then there exists a nonzero
vector w such that wTV = 0. Let w = (wg, wy, -+ ,wy,)". Then
0=w"V = (q(xo) qlz1) -+ qlzn)),

where ¢(x) is the polynomial defined by

Q(x) = Z wmgm<x> .

Because ¢(z) is a polynomial of degree n or less that vanishes at
n+1 points, it must be identically zero. But because each p,,(x)
is a monic polynomial of degree m, the polynomials {p,,(x)} are
linear independent. Because ¢,,(x) = py(z) /7, the polynomi-
als {gm(x)} are also linear independent. It follows that w,, =0
for every m =0, --- ,n. But this contradicts the fact that w is
nonzero. Therefore V' is invertible. U



18

(7) Given any self-adjoint matrix A €

(10)

RN¥*N and any unit vector

u € RY, use the Lanczos algorithm to construct an orthogonal
matrix () such that the first column of @ is v and that QT AQ
is tridiagonal.

Solution. The Lanczos algorithm constructs a sequence of vec-
tors p™ as

PV = Ap® _ e p©

P = Ap) e ) )

formn=1,2,---,
where the coefficients «,, and pu,, are given by
L (p(n) | Ap(N))
B (p(n) ‘p(n))
Hn = =D [ pD)

The algorithm halts as soon as p™ = 0 for some n. The vectors
p™ satisfy the orthogonality relation

forn=0,1,---,

form=1,2---.

(p(m) \p(")) =0 forevery m<n.
It folows from (9) that

o1 = ma [0

where 7y = 1 and 7w, = p,m,_1, which will be positive until
p™ = 0 for some n.

Now apply the Lanczos algorithm with p(® = u to construct
p™ until p™) =0. Forn=0,---,n; — 1 set

2

Y

If ny = N + 1 then you are done. Otherwise let u(™) be any
unit vector that is orthogonal to {u®,--- um~Y} and apply
the Lanczos algorithm with p® = uln;) to construct p™ until
p"2) =0. Forn=0,---,n,— 1 set

mtn) — p

Repeat this until ny +---4+n,, = N + 1.
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(8) Recall that A € CNM*¥ is called normal whenever A*A = AA*.
Show that A is normal and invertible if and only if there exists

a unitary matrix U and a self-adjoint, positive definite matrix
P such that A=UP = PU.

Solution. First suppose there exists a unitary matrix U and
a self-adjoint, positive definite matrix P such that A = UP =
PU. Because both U and P are invertible, it follows that A =
UP = PU is also invertible. Moreover, because

A*A = (UP)*UP = PU*UP = P?,
while
AA* = PU(PU)* = PUU*P = P?,
it follows that A*A = P? = AA*. Therefore A is normal and
invertible.
Now suppose A is normal and invertible. Because A is normal

there exists a unitary matrix V' € CV*¥ and a diagonal matrix
A such that A = VAV*. Then

MO0 - 0
A 0 A : 7

: .0

0 - 0 Ay

where the )\; are the eigenvalues of A. Because A is invertible
every \; is nonzero.
Let |A| and ¥ be the diagonal matrices given by

M 0 -0 o 0 - 0

A = 0 X - : o= 0 oy : ’
: o0 0 N
0 - 0 |\ 0 -+ 0 on

where 0; = \;/|A\;| for j =1,---, N. Clearly, |A| is self-adjoint
and positive definite, 3 is unitary, while
A=3Al = |AIXZ.

Let P = V|A|V* and U = VEV*. Clearly, P is self-adjoint and
positive definite and U is unitary. Moreover,

PU =V|A|VVEV* =VAV* = A,
and

UP=VIV*VIAIV* =VAV*=A,
so that A=UP = PU. O
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(9) Let A € RV*N be normal and invertible. Let {A,}%, be the

sequence of N x N matrices constructed recursively by the Q)R-
Method: Ay = A, A, = Q. R,, and A, 1 = R,Q,, where every
@, is orthogonal and every R, is upper triangular with positive
diagonal entries. Show that every A, is normal. (Hint: The
result of the previous problem might be helpful.)

Solution. We will prove that every A,, is normal and invertible
by induction on n. Because Ay = A, the assertion holds for
n = 0 by hypothesis. Now suppose the assertion holds for n.
We will show it holds for n + 1.

Because A,, € RV*¥ is invertible there exists unique matrices
@, and R, such that @, is orthogonal, R, is upper triangular
with positive diagonal entries, and

A, = QuR, .

Because A, € R¥*Y is normal and invertible, by applying the
result of the previous problem to the real setting, there exists an
orthogonal matrix U,, and a symmetric, positive definite matrix
P, such that

Because Q! = Q7 the above relations lead to the formulas

R,=Q'U,P,, and R,=Q'P,U,.

Because A,,,1 = R,Q,, the above formulas show that

= (QanQn> (QgUnQn) = Poi1Una,
where we have defined U, 1 = QTU,Q,, and P, = QL P,Q,.
It is clear that U,;; is orthogonal and that P,,; is symmet-
ric and positive definite. Because the above calculation shows

that A,11 = Ups1Poi1 = Pui1U,y1, the result of the previous
problem implies that A, is normal and invertible. 0

Remark. This result is one of the steps in the proof that the
(QR-method converges when A is normal.
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(10) Let Hy € RY*N and H(t) satisfy the isospectral flow initial-
value problem
dH
E:JH_HJ, H(O):H(],
where J(t) € RV*¥ such that J(t)T = —J(t) for every t € R.
Show that if Hy is normal then so is H(t) for every ¢t € R.
Solution. We will show that H(t)T H(t) = H(t)H (t)* for every
t € R. By taking the transpose of the isospectral flow initial-
value problem one sees that H(t)T satisfies
T
W g~ H) =TI~ JTHT
dt
=JH" - H"J, H0O)=H!.
Upon combining the initial-value problems governing H (t) and
H(t)T one sees that H(t)T H(t) is governed by
dH"H dH dH

T
H+ H'—
dt dt + dt

= (JH" —H"J)H+H"(JH — HJ)

=JH"H - H"JH+ H"JH — H"HJ

=JH'"H - H"HJ, H(0)"H(0) = HI H, .
Similarly, one sees that H(t)H (t)” is governed by
dHHT dH dHT

— g g—_
& Ty

=(JH—-HJ)H"+H(JH" — H"J)

=JHH" —HJH" + HJH" — HH"J

=JHH" —HH"J,  H)H(0)" = HyH .
Because Hj is normal one knows that HI Hy = HyH[', whereby
H(t)TH(t) and H(t)H(t)T are governed by the same initial-
value problem. Because the initial-value problem has a unique
solution, it follows that H(¢)TH(t) = H(t)H(t)T for every t €
R. Hence, H(t) is normal for every ¢t € R. O




