First Exam Solutions: MATH 410 Friday, 29 September 2006

1. [10] Suppose that $a \in \mathbb{R}$ has the property that a < 1/k for every $k \in \mathbb{Z}_+$. Show that $a \leq 0$.

Solution: Suppose $a \leq 0$ does not hold. Then by trichotomy a > 0. By the Archimedean Property there exists $n \in \mathbb{Z}_+$ such that 1 < na. Then 1/n < a, which contradicts the property that a < 1/k for every $k \in \mathbb{Z}_+$. Therefore $a \leq 0$ holds.

An alternative solution that uses more advanced machinery (and therefore is not as good) is the following. Because constant sequences converge while $1/k \to 0$ as $k \to \infty$, and because of the way limits preserve inequalities, one has

$$a = \lim_{k \to \infty} a \le \lim_{k \to \infty} 1/k = 0 \,. \quad \Box$$

Remark: The Archimedean Property lies behind the fact that $1/k \to 0$ as $k \to \infty$ in the alternative solution above.

- 2. [20] Give a counterexample to each of the following assertions.
 - (a) Every monotonic sequence in \mathbb{R} converges.
 - (b) Every bounded sequence in \mathbb{R} converges.
 - (c) A sequence $\{a_k\}_{k\in\mathbb{N}}$ in \mathbb{R} is convergent if the sequence $\{a_k^2\}_{k\in\mathbb{N}}$ is convergent.
 - (d) A countable union of closed subsets of \mathbb{R} is closed.

Solution (a): Let $a_k = k$ for every $k \in \mathbb{N}$. Then the sequence $\{a_k\}_{k \in \mathbb{N}}$ is increasing (and therefore monotonic), but does not converge.

Solution (b): Let $a_k = (-1)^k$ for every $k \in \mathbb{N}$. Then the sequence $\{a_k\}_{k\in\mathbb{N}}$ is bounded $(-1 \leq a_k \leq 1)$, but does not converge.

Solution (c): Let $a_k = (-1)^k$ for every $k \in \mathbb{N}$. Then the sequence $\{a_k^2\}_{k\in\mathbb{N}}$ converges to 1 (because $a_k^2 = (-1)^{2k} = 1$), while the sequence $\{a_k\}_{k\in\mathbb{N}}$ does not converge.

Solution (d): Let $I_k = [\frac{1}{2^k}, 2]$ for every $k \in \mathbb{N}$. Then each interval I_k is closed while

$$\bigcup_{k\in\mathbb{N}} I_k = (0,2] \quad \text{is not closed} . \quad \Box$$

3. [20] Consider the real sequence $\{b_k\}_{k\in\mathbb{N}}$ given by

$$b_k = (-1)^k \frac{3k+4}{k+1}$$
 for every $k \in \mathbb{N} = \{0, 1, 2, \dots\}$.

- (a) Give the first three terms of the subsequence $\{b_{2k+1}\}_{k\in\mathbb{N}}$.
- (b) Give the first three terms of the subsequence $\{b_{3^k}\}_{k \in \mathbb{N}}$.
- (c) Give $\limsup_{k\to\infty} b_k$ and $\liminf_{k\to\infty} b_k$. (No proof is needed here.)

Solution: You are given that $\mathbb{N} = \{0, 1, 2, \dots\}$, as was done in class and in the notes (but in not the book). Then (a) the first three terms of the subsequence $\{b_{2k+1}\}_{k \in \mathbb{N}}$ are

$$b_1 = -\frac{7}{2}$$
, $b_3 = -\frac{13}{4}$, $b_5 = -\frac{19}{6}$,

while (b) the first three terms of the subsequence $\{b_{3^k}\}_{k\in\mathbb{N}}$ are

$$b_1 = -\frac{7}{2}$$
, $b_3 = -\frac{13}{4}$, $b_9 = -\frac{31}{10}$.

Because $b_{2k} > 0$ while $b_{2k+1} < 0$, and because

$$\lim_{k \to \infty} b_{2k} = \lim_{k \to \infty} \frac{6k+4}{2k+1} = 3 \,,$$

while

$$\lim_{k \to \infty} b_{2k+1} = -\lim_{k \to \infty} \frac{6k+7}{2k+2} = -3,$$

(c) one has that

$$\limsup_{k \to \infty} b_k = 3, \qquad \liminf_{k \to \infty} b_k = -3.$$

4. [20] Let $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ be bounded sequences in \mathbb{R} . (a) Prove that

$$\limsup_{k \to \infty} (a_k + b_k) \le \limsup_{k \to \infty} a_k + \limsup_{k \to \infty} b_k.$$

(b) Give an example for which equality does not hold above.

Solution (a): Let $c_k = a_k + b_k$ for every $k \in \mathbb{N}$. Because $\{a_k\}_{k\in\mathbb{N}}, \{b_k\}_{k\in\mathbb{N}}, \text{ and } \{c_k\}_{k\in\mathbb{N}}$ are bounded sequences in \mathbb{R} , we have

$$\limsup_{k \to \infty} a_k = \lim_{k \to \infty} \overline{a}_k ,$$
$$\limsup_{k \to \infty} b_k = \lim_{k \to \infty} \overline{b}_k ,$$
$$\limsup_{k \to \infty} c_k = \lim_{k \to \infty} \overline{c}_k ,$$

 $\mathbf{2}$

where $\{\overline{a}_k\}_{k\in\mathbb{N}}, \{\overline{b}_k\}_{k\in\mathbb{N}}$, and $\{\overline{c}_k\}_{k\in\mathbb{N}}$ are the bounded, nonincreasing (and therefore convergent) sequences in \mathbb{R} whose terms are defined for every $k \in \mathbb{N}$ by

$$\overline{a}_k = \sup\{a_l : l \ge k\},\$$

$$\overline{b}_k = \sup\{b_l : l \ge k\},\$$

$$\overline{c}_k = \sup\{c_l : l \ge k\}.$$

For every $k \in \mathbb{N}$ we have

 $c_l = a_l + b_l \le \overline{a}_k + \overline{b}_k$ for every $l \ge k$.

By taking the sup over $l \ge k$ above, we see that

$$\overline{c}_k = \sup\{c_l : l \ge k\} \le \overline{a}_k + \overline{b}_k.$$

Then by the properties of limits

$$\limsup_{k \to \infty} (a_k + b_k) = \limsup_{k \to \infty} c_k$$

=
$$\lim_{k \to \infty} \overline{c}_k$$

$$\leq \lim_{k \to \infty} (\overline{a}_k + \overline{b}_k)$$

=
$$\lim_{k \to \infty} \overline{a}_k + \lim_{k \to \infty} \overline{b}_k$$

=
$$\limsup_{k \to \infty} a_k + \limsup_{k \to \infty} b_k . \Box$$

Solution (b): Let $a_k = (-1)^k$ and $b_k = (-1)^{k+1}$ for every

 $k \in \mathbb{N}$. Clearly

$$\lim_{k \to \infty} \sup_{k \to \infty} a_k = \lim_{k \to \infty} a_{2k} = 1,$$
$$\lim_{k \to \infty} \sup_{k \to \infty} b_k = \lim_{k \to \infty} b_{2k+1} = 1,$$

while (because $a_k + b_k = 0$ for every $k \in \mathbb{N}$)

$$\limsup_{k \to \infty} (a_k + b_k) = \lim_{k \to \infty} (a_k + b_k) = 0.$$

Therefore

$$\limsup_{k \to \infty} (a_k + b_k) = 0 < 2 = \limsup_{k \to \infty} a_k + \limsup_{k \to \infty} b_k. \quad \Box$$

- 5. [20] Let A and B be subsets of \mathbb{R} .
 - (a) Prove that $(A \cap B)^c \subset A^c \cap B^c$.
 - (b) Give an example for which equality does not hold above.

Solution (a): Let $x \in (A \cap B)^c$. By the definition of closure, there exists a sequence $\{x_k\}_{k \in \mathbb{N}}$ contained in $A \cap B$ such that $x_k \to x$ as $k \to \infty$. But the sequence $\{x_k\}_{k \in \mathbb{N}}$ is therefore contained in both A and B while $x_k \to x$ as $k \to \infty$. By the definition of closure, it follows that $x \in A^c$ and $x \in B^c$, whereby $x \in A^c \cap B^c$.

Solution (b): A simple example is A = (0, 1) and B = (1, 2). Then $(A \cap B)^c = \emptyset^c = \emptyset$ (because $A \cap B = \emptyset$), while $A^c \cap B^c = [0, 1] \cap [1, 2] = [1, 1] = \{1\}$ (because $A^c = [0, 1]$ and $B^c = [1, 2]$). Hence, $(A \cap B)^c = \emptyset \neq \{1\} = A^c \cap B^c$.

A more dramatic example is $A = \mathbb{Q}$ and $B = \{\sqrt{2} + q : q \in \mathbb{Q}\}$. Notice that $A \cap B = \emptyset$ because $\sqrt{2}$ is irrational. Notice too that $A^c = \mathbb{R}$ and $B^c = \mathbb{R}$ — i.e. that A and B are each dense in \mathbb{R} . Then $(A \cap B)^c = \emptyset^c = \emptyset$, while $A^c \cap B^c = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$. Hence, $(A \cap B)^c = \emptyset \neq \mathbb{R} = A^c \cap B^c$.

- 6. [10] Let $\{b_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R} and let A be a subset of \mathbb{R} . Write the negations of the following assertions.
 - (a) "For every $m \in \mathbb{R}$ one has $b_j > m$ frequently as $j \to \infty$."
 - (b) "Every sequence in A has a subsequence that converges to a limit in A."

Solution (a): "For some $m \in \mathbb{R}$ one has $b_j \leq m$ ultimately as $j \to \infty$."

Solution (b): "There is a sequence in A such that no subsequence of it will converge to a limit in A."

A clearer answer is

"There is a sequence in A such that every subsequence of it either will diverge or will converge to a limit outside A."

4