First Exam Solutions: MATH 410
 Friday, 29 September 2006

1. [10] Suppose that $a \in \mathbb{R}$ has the property that $a<1 / k$ for every $k \in \mathbb{Z}_{+}$. Show that $a \leq 0$.

Solution: Suppose $a \leq 0$ does not hold. Then by trichotomy $a>0$. By the Archimedean Property there exists $n \in \mathbb{Z}_{+}$such that $1<n a$. Then $1 / n<a$, which contradicts the property that $a<1 / k$ for every $k \in \mathbb{Z}_{+}$. Therefore $a \leq 0$ holds.

An alternative solution that uses more advanced machinery (and therefore is not as good) is the following. Because constant sequences converge while $1 / k \rightarrow 0$ as $k \rightarrow \infty$, and because of the way limits preserve inequalities, one has

$$
a=\lim _{k \rightarrow \infty} a \leq \lim _{k \rightarrow \infty} 1 / k=0 .
$$

Remark: The Archimedean Property lies behind the fact that $1 / k \rightarrow 0$ as $k \rightarrow \infty$ in the alternative solution above.
2. [20] Give a counterexample to each of the following assertions.
(a) Every monotonic sequence in \mathbb{R} converges.
(b) Every bounded sequence in \mathbb{R} converges.
(c) A sequence $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ in \mathbb{R} is convergent if the sequence $\left\{a_{k}^{2}\right\}_{k \in \mathbb{N}}$ is convergent.
(d) A countable union of closed subsets of \mathbb{R} is closed.

Solution (a): Let $a_{k}=k$ for every $k \in \mathbb{N}$. Then the sequence $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ is increasing (and therefore monotonic), but does not converge.

Solution (b): Let $a_{k}=(-1)^{k}$ for every $k \in \mathbb{N}$. Then the sequence $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ is bounded $\left(-1 \leq a_{k} \leq 1\right)$, but does not converge.

Solution (c): Let $a_{k}=(-1)^{k}$ for every $k \in \mathbb{N}$. Then the sequence $\left\{a_{k}^{2}\right\}_{k \in \mathbb{N}}$ converges to 1 (because $a_{k}^{2}=(-1)^{2 k}=1$), while the sequence $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ does not converge.

Solution (d): Let $I_{k}=\left[\frac{1}{2^{k}}, 2\right]$ for every $k \in \mathbb{N}$. Then each interval I_{k} is closed while

$$
\bigcup_{k \in \mathbb{N}} I_{k}=(0,2] \quad \text { is not closed }
$$

3. [20] Consider the real sequence $\left\{b_{k}\right\}_{k \in \mathbb{N}}$ given by

$$
b_{k}=(-1)^{k} \frac{3 k+4}{k+1} \quad \text { for every } k \in \mathbb{N}=\{0,1,2, \ldots\}
$$

(a) Give the first three terms of the subsequence $\left\{b_{2 k+1}\right\}_{k \in \mathbb{N}}$.
(b) Give the first three terms of the subsequence $\left\{b_{3^{k}}\right\}_{k \in \mathbb{N}}$.
(c) Give $\limsup _{k \rightarrow \infty} b_{k}$ and $\liminf _{k \rightarrow \infty} b_{k}$. (No proof is needed here.)

Solution: You are given that $\mathbb{N}=\{0,1,2, \cdots\}$, as was done in class and in the notes (but in not the book). Then (a) the first three terms of the subsequence $\left\{b_{2 k+1}\right\}_{k \in \mathbb{N}}$ are

$$
b_{1}=-\frac{7}{2}, \quad b_{3}=-\frac{13}{4}, \quad b_{5}=-\frac{19}{6},
$$

while (b) the first three terms of the subsequence $\left\{b_{3^{k}}\right\}_{k \in \mathbb{N}}$ are

$$
b_{1}=-\frac{7}{2}, \quad b_{3}=-\frac{13}{4}, \quad b_{9}=-\frac{31}{10} .
$$

Because $b_{2 k}>0$ while $b_{2 k+1}<0$, and because

$$
\lim _{k \rightarrow \infty} b_{2 k}=\lim _{k \rightarrow \infty} \frac{6 k+4}{2 k+1}=3
$$

while

$$
\lim _{k \rightarrow \infty} b_{2 k+1}=-\lim _{k \rightarrow \infty} \frac{6 k+7}{2 k+2}=-3
$$

(c) one has that

$$
\limsup _{k \rightarrow \infty} b_{k}=3, \quad \liminf _{k \rightarrow \infty} b_{k}=-3 .
$$

4. [20] Let $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{b_{k}\right\}_{k \in \mathbb{N}}$ be bounded sequences in \mathbb{R}.
(a) Prove that

$$
\limsup _{k \rightarrow \infty}\left(a_{k}+b_{k}\right) \leq \limsup _{k \rightarrow \infty} a_{k}+\limsup _{k \rightarrow \infty} b_{k}
$$

(b) Give an example for which equality does not hold above.

Solution (a): Let $c_{k}=a_{k}+b_{k}$ for every $k \in \mathbb{N}$. Because $\left\{a_{k}\right\}_{k \in \mathbb{N}},\left\{b_{k}\right\}_{k \in \mathbb{N}}$, and $\left\{c_{k}\right\}_{k \in \mathbb{N}}$ are bounded sequences in \mathbb{R}, we have

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} a_{k} & =\lim _{k \rightarrow \infty} \bar{a}_{k}, \\
\limsup _{k \rightarrow \infty} b_{k} & =\lim _{k \rightarrow \infty} \bar{b}_{k}, \\
\limsup _{k \rightarrow \infty} c_{k} & =\lim _{k \rightarrow \infty} \bar{c}_{k},
\end{aligned}
$$

where $\left\{\bar{a}_{k}\right\}_{k \in \mathbb{N}},\left\{\bar{b}_{k}\right\}_{k \in \mathbb{N}}$, and $\left\{\bar{c}_{k}\right\}_{k \in \mathbb{N}}$ are the bounded, nonincreasing (and therefore convergent) sequences in \mathbb{R} whose terms are defined for every $k \in \mathbb{N}$ by

$$
\begin{aligned}
& \bar{a}_{k}=\sup \left\{a_{l}: l \geq k\right\}, \\
& \bar{b}_{k}=\sup \left\{b_{l}: l \geq k\right\}, \\
& \bar{c}_{k}=\sup \left\{c_{l}: l \geq k\right\} .
\end{aligned}
$$

For every $k \in \mathbb{N}$ we have

$$
c_{l}=a_{l}+b_{l} \leq \bar{a}_{k}+\bar{b}_{k} \quad \text { for every } l \geq k .
$$

By taking the sup over $l \geq k$ above, we see that

$$
\bar{c}_{k}=\sup \left\{c_{l}: l \geq k\right\} \leq \bar{a}_{k}+\bar{b}_{k}
$$

Then by the properties of limits

$$
\begin{aligned}
\limsup _{k \rightarrow \infty}\left(a_{k}+b_{k}\right) & =\limsup _{k \rightarrow \infty} c_{k} \\
& =\lim _{k \rightarrow \infty} \bar{c}_{k} \\
& \leq \lim _{k \rightarrow \infty}\left(\bar{a}_{k}+\bar{b}_{k}\right) \\
& =\lim _{k \rightarrow \infty} \bar{a}_{k}+\lim _{k \rightarrow \infty} \bar{b}_{k} \\
& =\limsup _{k \rightarrow \infty} a_{k}+\limsup _{k \rightarrow \infty} b_{k}
\end{aligned}
$$

Solution (b): Let $a_{k}=(-1)^{k}$ and $b_{k}=(-1)^{k+1}$ for every $k \in \mathbb{N}$. Clearly

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} a_{k} & =\lim _{k \rightarrow \infty} a_{2 k}=1, \\
\limsup _{k \rightarrow \infty} b_{k} & =\lim _{k \rightarrow \infty} b_{2 k+1}=1,
\end{aligned}
$$

while (because $a_{k}+b_{k}=0$ for every $k \in \mathbb{N}$)

$$
\limsup _{k \rightarrow \infty}\left(a_{k}+b_{k}\right)=\lim _{k \rightarrow \infty}\left(a_{k}+b_{k}\right)=0
$$

Therefore

$$
\limsup _{k \rightarrow \infty}\left(a_{k}+b_{k}\right)=0<2=\limsup _{k \rightarrow \infty} a_{k}+\limsup _{k \rightarrow \infty} b_{k} .
$$

5. [20] Let A and B be subsets of \mathbb{R}.
(a) Prove that $(A \cap B)^{c} \subset A^{c} \cap B^{c}$.
(b) Give an example for which equality does not hold above.

Solution (a): Let $x \in(A \cap B)^{c}$. By the definition of closure, there exists a sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ contained in $A \cap B$ such that $x_{k} \rightarrow x$ as $k \rightarrow \infty$. But the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is therefore contained in both A and B while $x_{k} \rightarrow x$ as $k \rightarrow \infty$. By the definition of closure, it follows that $x \in A^{c}$ and $x \in B^{c}$, whereby $x \in A^{c} \cap B^{c}$.

Solution (b): A simple example is $A=(0,1)$ and $B=(1,2)$. Then $(A \cap B)^{c}=\emptyset^{c}=\emptyset$ (because $A \cap B=\emptyset$), while $A^{c} \cap B^{c}=$ $[0,1] \cap[1,2]=[1,1]=\{1\}$ (because $A^{c}=[0,1]$ and $B^{c}=[1,2]$). Hence, $(A \cap B)^{c}=\emptyset \neq\{1\}=A^{c} \cap B^{c}$.

A more dramatic example is $A=\mathbb{Q}$ and $B=\{\sqrt{2}+q: q \in \mathbb{Q}\}$. Notice that $A \cap B=\emptyset$ because $\sqrt{2}$ is irrational. Notice too that $A^{c}=\mathbb{R}$ and $B^{c}=\mathbb{R}$ - i.e. that A and B are each dense in \mathbb{R}. Then $(A \cap B)^{c}=\emptyset^{c}=\emptyset$, while $A^{c} \cap B^{c}=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$. Hence, $(A \cap B)^{c}=\emptyset \neq \mathbb{R}=A^{c} \cap B^{c}$.
6. [10] Let $\left\{b_{k}\right\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R} and let A be a subset of \mathbb{R}. Write the negations of the following assertions.
(a) "For every $m \in \mathbb{R}$ one has $b_{j}>m$ frequently as $j \rightarrow \infty$."
(b) "Every sequence in A has a subsequence that converges to a limit in A."

Solution (a): "For some $m \in \mathbb{R}$ one has $b_{j} \leq m$ ultimately as $j \rightarrow \infty$."

Solution (b): "There is a sequence in A such that no subsequence of it will converge to a limit in A."

A clearer answer is
"There is a sequence in A such that every subsequence of it either will diverge or will converge to a limit outside A."

