
Second In-Class Exam Solutions: MATH 410

Wednesday, 9 November 2005

1. [30] State whether each of the following statements is true or
false. Give a proof when true and a counterexample when false.
(a) If f : R → R is monotonic and one-to-one then it is also

continuous.

Solution: This statement is false. There are many coun-
terexamples. The simplest ones have a single jump discon-
tinuity somewhere. For example, consider the function f

defined by

f(x) =

{

x for x < 0 ,

x + 1 for x ≥ 0 .

This function is clearly increasing and one-to-one, but has
a jump discontinuity at x = 0 because

lim
x→0−

f(x) = 0 6= 1 = lim
x→0+

f(x) .

�

(b) If f : R → R is differentiable then it is continuous.

Solution: This statement is true. Let c ∈ R be arbitrary.
Because f is differentiable at c we know that

lim
x→c

f(x) − f(c)

x − c
= f ′(c) .

Because for every x ∈ R such that x 6= c one has

f(x) = f(c) +
f(x) − f(c)

x − c
(x − c) ,

it follows from the algebraic properties of limits that

lim
x→c

f(x) = lim
x→c

f(c) + lim
x→c

f(x) − f(c)

x − c
· lim

x→c

(x − c)

= f(c) + f ′(c) · 0 = f(c) .

Hence, f is continuous at c. But c ∈ R was arbitrary.
Hence, f is continuous over R. �

Remark: The facts

lim
x→c

f(c) = f(c) , and lim
x→c

(x − c) = 0 ,
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were used above without fanfare. You do not have to give
proofs of such elementary facts unless you are explicitly
asked to do so.

(c) If f : R → R is differentiable then its derivative f ′ : R → R

is continuous.

Solution: This statement is false. The example we had
discussed in class was

f(x) =







x2 cos

(

1

x

)

for x 6= 0 ,

0 for x = 0 .

This function is clearly differentiable at every x 6= 0 with

f ′(x) = 2x cos

(

1

x

)

+ sin

(

1

x

)

for x 6= 0 .

Moreover, it is differentiable at x = 0 with

f ′(0) = lim
x→0

f(x) − f(0)

x − 0
= lim

x→0

f(x)

x

= lim
x→0

x cos

(

1

x

)

= 0 .

Hence, f is differentiable over R. However, because

lim
x→0

sin

(

1

x

)

does not exist ,

while

lim
x→0

2x cos

(

1

x

)

= 0 ,

it follows that

lim
x→0

f ′(x) does not exist .

Therefore f ′ is not continuous at x = 0. �

2. [15] Let f : R → R be differentiable. Let n ∈ N. Suppose the
following equation has at most n solutions:

f ′(x) = 0 , x ∈ R .

Show the following equation has at most n + 1 solutions:

f(x) = 0 , x ∈ R .



3

Solution: Suppose that the equation f ′(x) = 0 has at most
n solutions while the equation f(x) = 0 has n + 2 solutions
{xi}

n+1

i=0 . Without loss of generality we can assume these points
are labeled so that

−∞ < x0 < x1 < · · · < xn < xn+1 < ∞ .

Then for each i = 1, · · · , n + 1 one knows that
• f : [xi−1, xi] → R is differentiable (and hence continuous),
• f(xi−1) = f(xi) = 0.

Rolle’s Theorem then implies that for each i = 1, · · · , n+1 there
exists a point pi ∈ (xi−1, xi) such that f ′(pi) = 0. Because the
n + 1 intervals (xi−1, xi) are disjoint, the points pi are distinct.
The equation f ′(x) = 0 therefore has at least n + 1 solutions,
which contradicts our starting supposition. �

Alternative Solution: Suppose f ′(x) = 0 has exactly m solu-
tions {ci}

m

i=1, where m ≤ n. Without loss of generality we can
assume these m critical points are labeled so that

−∞ < c1 < c2 < · · · < cm−1 < cm < ∞ .

By the Dichotomy Theorem f ′ must be either negative or pos-
itive over each of the m + 1 disjoint intervals

(−∞, c1) , (c1, c2) , · · · (cm−1, cm) , (cm,∞) .

By the Monotonicity Theorem f must be monotonic (and hence
one-to-one) over each of the m + 1 intervals

(−∞, c1] , [c1, c2] , · · · [cm−1, cm] , [cm,∞) .

The equation f(x) = 0 can therefore have at most one solution
in each of these m + 1 intervals. Because the union of these
intervals is R, the equation f(x) = 0 can have at most m + 1
solutions. The result follows because m + 1 ≤ n + 1. �

Remark: The alternative solution rests on the Dichotomy The-
orem and the Monotonicity Theorem. This machinery is much
heavier than that used in the first solution, which rests only on
Rolle’s Theorem. Indeed, the proof of the Monotonicity Theo-
rem rests on the Mean-Value Theorem, the proof of which rests
on Rolle’s Theorem.
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3. [15] Suppose that f : (a, b) → R is twice differentiable and that
f ′′ : (a, b) → R is bounded over (a, b). Show that there exists
an M ∈ R+ such that for all points x, y ∈ (a, b) one has

∣

∣f ′(x) − f ′(y)
∣

∣ ≤ M |x − y| .

Solution: Because f ′′ : (a, b) → R is bounded over (a, b) one
has

M = sup
{

|f ′′(x)| : x ∈ (a, b)
}

< ∞ .

Let x, y ∈ (a, b). If x = y then the inequality clearly holds. If
x < y then, because f ′ is differentiable (and hence continuous)
over [x, y], the Mean-Value Theorem applied to f ′ implies there
exists a p ∈ (x, y) such that

f ′(x) − f ′(y) = f ′′(p)(x − y) .

Hence,
∣

∣f ′(x) − f ′(y)
∣

∣ =
∣

∣f ′′(p)
∣

∣ |x − y| ≤ M |x − y| .

The case y < x goes similarly. �

4. [15] Prove that for every x > 0 one has

1 + 3

2
x < (1 + x)

3

2 < 1 + 3

2
x + 3

8
x2 .

Solution: Define f(x) = (1 + x)
3

2 for every x > −1. Then

f ′(x) = 3

2
(1 + x)

1

2 , f ′′(x) = 3

4
(1 + x)−

1

2 .

Let x > 0. By the Lagrange Remainder Theorem there exists a
p ∈ (0, x) such that

f(x) = f(0) + f ′(0)x + 1

2
f ′′(p)x2 .

Hence,

(1 + x)
3

2 − 1 − 3

2
x = 3

8
(1 + p)−

1

2 x2 .

Because p 7→ (1+p)−
1

2 is a decreasing function while 0 < p < x,
one has the bounds

0 < (1 + x)−
1

2 < (1 + p)−
1

2 < 1 ,

whereby

0 < (1 + x)
3

2 − 1 − 3

2
x < 3

8
x2 .

The result follows. �
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5. [15] Let f : (a, b) → R be uniformly continuous over (a, b). Let
{xk}k∈N be a Cauchy sequence contained in (a, b). Show that
{f(xk)}k∈N is a Cauchy sequence.

Solution: Let ε > 0. Because f : (a, b) → R is uniformly
continuous over (a, b), there exists a δ > 0 such that for all
points x, y ∈ D one has

|x − y| < δ =⇒
∣

∣f(x) − f(y)
∣

∣ < ε .

Because {xk}k∈N is a Cauchy sequence, there exists an N ∈ N

such that for all k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ .

Hence, for all k, l ∈ N one has

k, l > N =⇒ |xk − xl| < δ

=⇒
∣

∣f(xk) − f(xl)
∣

∣ < ε .

Therefore {f(xk)}k∈N is a Cauchy sequence. �

Remark: The characterization of uniform convergence used
above was given as assertion (b) of problem 6 below.

6. [10] Let D ⊂ R and f : D → R. Write negations of the following
assertions.
(a) “For all sequences {xk}k∈N and {yk}k∈N contained in D one

has

lim
k→∞

|xk − yk| = 0 =⇒ lim
k→∞

∣

∣f(xk) − f(yk)
∣

∣ = 0 .”

Solution: “There exist sequences {xk}k∈N and {yk}k∈N

contained in D such that

lim
k→∞

|xk − yk| = 0 and lim sup
k→∞

∣

∣f(xk) − f(yk)
∣

∣ > 0 .”

(b) “For every ε > 0 there exists a δ > 0 such that for all
points x, y ∈ D one has

|x − y| < δ =⇒
∣

∣f(x) − f(y)
∣

∣ < ε .”

Solution: “There exists an ε > 0 such that for every δ > 0
there exist points x, y ∈ D such that

|x − y| < δ and
∣

∣f(x) − f(y)
∣

∣ ≥ ε .”


