HW 1

1 Proposition 1.1

(a) for every x € X there exists —z € X such that z + (—z) = 0,

r+y=x+=2
= (—z)+(z+y) = (-2)+ (z + 2)
= ((—2)+2)+y=((-2)+x)+ 2 by associativity
=0+y=0+2 by the property of inverse
>y=2z by the property of identity
(b)
rT+y==zx
=>(—z)+z+y=(—2)+ (2
=0+y=0
=y =
()
r+y=0
= (-v)+r+y=(-2)+0
=0+y=(—x)
=y = (-2

(2) + (=) + (=@ +y) + (@ +y) = (2)+ (=y) + (=@ +y) + (= +y)
= (=) + (=y) + 0= ((=2) + 2) + ((=y) +y) + (=(z +y))
= (—2)+ (=y) =0+ 0+ (=(z +y))
= (=) +(-y) = —(z +y)

2 Proposition 1.2
Since z # 0 for all the below, inverse 2! of z exists.

(a)

Ty =2
= 2 N zy) = 27 (22)
= (v7'2)y = (z7'2)2 by associativity
= ly =1z by the property of inverse
=yl =121 by commutativity
=>y=z by the property of identity



Ty =x
=z Noy) =o'

= (r )y =1

=1ly=1

=y=1
()

zy =1

=2 (zy) = (271
= (v o)y =27t

= 1y:x_1

Sy=a"'

(zy) N(zy)ay ™ = (zy) (ay)ay
= 1o~y = (zy) (@ ) (yy )
=y =211
= x’ly’l = xy’l

(e) (@) =) =" (@) = (@) @)

3 Proposition 1.3

(a)

1+40=1

= 2(14+0) =21

=zl+20=2xl by distributivity
=20=0 by Prop 1.1(b)

(b) If 2 = 0 then done.

If  # 0 then there exists a multiplicative inverse 27! of x

Ty =

=z Hay) =270
= ly =
=y =

()
(—=2)y + (=(2y)) + 2y = (=2)y + (=(zy)) + 2y
= ((=2) + 2)y + (=(2y)) = (=2)y + 0

= 0y + (=(zy)) = (—x)y

= 0+ (=(zy)) = (—2)y

= —(zy) = (—x)y

(

Switch z and y and we get —(xy) = (—y)z = x(—y).



(d) If (—z) =0thenz+(—2) =0=24+0=0= 2 =0, but x # 0, hence (—z) # 0.
Inverse of (—z) exists.

(—2)"H(-2) =1
= (—2) (=) (-2 ) = (=27")
= (—2) " (=(=z)(@™")) = (=27)
= (—2)" (=(=(zz7))) = (=27)
= (—2) Hzah) = (—27)
= (—2) L= (=27
= (—2)" = (-27")

4 Proposition 1.5

(a) r>0=a+(—2)> (—x) = 0> (—x)
r<0=z+(—2)<(—2z)=0<(—x)

(b) 0 <& = 240 < z+ x by Definition 1.8(i).
Then by transitivity, y < z < z4+rxr =y < z+=x

y<z=>0<z—y.
Since x > 0,z —y > 0, we have z(z —y) > 0= 2z + z(—y) > 0= 22z > zy

(c) < 0= y+x <y+ 0 by Definition 1.8(i).
Then by transitivity, y+r <y <z=y+zx < 2

y<z=0<z-—u.
Since (—x) > 0,z —y > 0, we have (—z)(z —y) > 0= (—z)z+ (—x)(—y) > 0=
Ty > xz

(d) For z >0, zz > 0= 2? > 0
For x < 0,(—x) > 0= (—2)(—z) > 0= 2% = (—x)(—x) > 0.
(e) First we show y~! > 0 for y > 0.
By (d), (y=')* > 0, since y > 0, we have (y ')’y > 0= (y ') = (y )y )y >0

We will prove by contradiction.
Suppose y~! >z~ !, then since zy > 0 we get zy(y~') > zy(2~!) = x > y which
contradicts to x <y, so y~t <z~

5 Proposition 1.6

— proof of transitivity
Ifz,y,2€ X,z <yandy < z implies y —x € Xt and 2z —y € X*. By positivity
properties, we get (y — ) + (2 —y) € XT . Therefore we have z —x € X* which
implies z < z.

— proof of trichotomy
r<ysy—cveXTt
y<zre —(y—x)=xr—yeX"
Since exactly one of y — 2z € XT,—(y —x) € X, or y — 2z = 0 is true, exactly one
of x <y, y <z orx=yis true.



— proof of Definition 1.8 (i)
If © < y then y — 2z € X*.

But then we would have (y + 2) — (z + 2)

y+z+(—2)+ (—x) =y — 2 € X which implies z + z < y + z.

— proof of Definition 1.8 (ii)

Ifz>0andy >0, wehave z =2 —0€ Xt and y =y — 0 € XT. By positivity
properties we get zy € X, which implies zy > 0.

From the first two proofs, we get that (X, <) is an ordered set. From the last
two proofs we get that X satisfies the definition of an ordered field.

6 Proposition 1.7

(a) For z > 0, |z| =z > 0.
For x =0, |z| = 0.

For z <0, || = —x > 0 (by Proposition 1.3(a)).

Hence |z| > 0.
(b) x =0 = |z| = 0 by definition.

If z # 0, then either x > 0 or x < 0.
For both cases |z| > 0, which means |z| # 0.

z]=0=>2=0

(c) If x >0, then |z| =2 > 0> —uz.

If x <0, then |z| = —x >0 > z.
= |z| >z,

|z| > —=x.

Similarly, we have |y| > y,

lyl > —y.

Since |z +y| equals to (x+y) or —(z+y) = (—z)+(—y), we have [z +y| < |z|+|y|

in any case.

(d) If = 0, then |zy| = |0y = 0 = [0[|y[ = [yl

Same for if y = 0.
Divide the rest into four cases

*x>0,y>0
Then xy >0

We get [z[|y] = (2)(y) = (x

*xx>0,y<0

Then z(—y) > 0= 2y <0
We get [z]|y| = (2)(—y) =

* x<0,y>0

Then (—z)y > 0= 2y <0
We get |||y = (—z)(y) =

y) = |y

—(zy) = |zy|

—(zy) = |zy|

x £ <0,y <0 Then (—z)(—y) >0=2y >0

We get [zly| = (=2)(=y) = (zy) = [zy]
|z||y| = |zy| for all cases, so of course we have |z||y| > |zy| for all cases.
(e) If x > 0, then (—z) < 0,50 |z| =2 = —(—2x) =| — |
If =0, then |z| =0=| — 2.
If x <0, then (—z) >0, so |z| = (—x) = | — z|.

4



Therefore we have |z| = | — z| for all .

By (c) we get |z < |z —y|+ |y| and [y < |y — z| + |z

= |z —y| 2 [z = [y and |z — y[ = |y — 2] = [y[ — [2]

If |z| — |y| = 0 then |z — y| > 0 = ||z| — |y|| is automatically true.

If |x| —|y| > 0 then use the first equation and we get |z —y| > |z|—|y| = ||z|—|y]|
If |x] — |y| < 0 then use the second equation and we get |x — y| >= |y| — |z| =

= (] = 1yl) = [l=[ = [yl

We have then proved |z —y| > ||z| — |y]|.

7 Proposition 1.8
By the first assertion, there exists k,I € Z* such that —k < z < [. Then z €
(—k,1) C (—k,l]. We express (—k,[] as the union of [+m disjoint unit length intervals,
(=k,l] =U.__, ;(i—1,4]. Since every interval is disjoint from each other, z € (i —1, 1]
for exactly one i = m. Since —k 4+ 1 < i < [, we have —k < m < [ such that
r e (m—1,m|.



