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1 Proposition 1.1

(a) for every x ∈ X there exists −x ∈ X such that x + (−x) = 0,

x + y = x + z

⇒ (−x) + (x + y) = (−x) + (x + z)

⇒ ((−x) + x) + y = ((−x) + x) + z by associativity

⇒ 0 + y = 0 + z by the property of inverse

⇒ y = z by the property of identity

(b)

x + y = x

⇒ (−x) + x + y = (−x) + (x)

⇒ 0 + y = 0

⇒ y = 0

(c)

x + y = 0

⇒ (−x) + x + y = (−x) + 0

⇒ 0 + y = (−x)

⇒ y = (−x)

(d)

(−x) + (−y) + (−(x + y)) + (x + y) = (−x) + (−y) + (−(x + y)) + (x + y)

⇒ (−x) + (−y) + 0 = ((−x) + x) + ((−y) + y) + (−(x + y))

⇒ (−x) + (−y) = 0 + 0 + (−(x + y))

⇒ (−x) + (−y) = −(x + y)

(e) −(−x) = −(−x) + 0 = −(−x) + ((−x) + x) = ((−(−x)) + (−x)) + x = 0 + x = x

2 Proposition 1.2
Since x 6= 0 for all the below, inverse x−1 of x exists.

(a)

xy = xz

⇒ x−1(xy) = x−1(xz)

⇒ (x−1x)y = (x−1x)z by associativity

⇒ 1y = 1z by the property of inverse

⇒ y1 = z1 by commutativity

⇒ y = z by the property of identity
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(b)

xy = x

⇒ x−1(xy) = x−1x

⇒ (x−1x)y = 1

⇒ 1y = 1

⇒ y = 1

(c)

xy = 1

⇒ x−1(xy) = (x−1)1

⇒ (x−1x)y = x−1

⇒ 1y = x−1

⇒ y = x−1

(d)

(xy)−1(xy)x−1y−1 = (xy)−1(xy)x−1y−1

⇒ 1x−1y−1 = (xy)−1(xx−1)(yy−1)

⇒ x−1y−1 = x−11

⇒ x−1y−1 = xy−1

(e) (x−1)−1 = (x−1)−11 = (x−1)−1((x−1)x) = ((x−1)−1(x−1))x

3 Proposition 1.3

(a)

1 + 0 = 1

⇒ x(1 + 0) = x1

⇒ x1 + x0 = x1 by distributivity

⇒ x0 = 0 by Prop 1.1(b)

(b) If x = 0 then done.
If x 6= 0 then there exists a multiplicative inverse x−1 of x

xy = 0

⇒ x−1(xy) = x−10

⇒ 1y = 0

⇒ y = 0

(c)

(−x)y + (−(xy)) + xy = (−x)y + (−(xy)) + xy

⇒ ((−x) + x)y + (−(xy)) = (−x)y + 0

⇒ 0y + (−(xy)) = (−x)y

⇒ 0 + (−(xy)) = (−x)y

⇒ −(xy) = (−x)y

Switch x and y and we get −(xy) = (−y)x = x(−y).
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(d) If (−x) = 0 then x+(−x) = 0 ⇒ x+0 = 0 ⇒ x = 0, but x 6= 0, hence (−x) 6= 0.
Inverse of (−x) exists.

(−x)−1(−x) = 1

⇒ (−x)−1(−x)(−x−1) = (−x−1)

⇒ (−x)−1(−(−x)(x−1)) = (−x−1)

⇒ (−x)−1(−(−(xx−1))) = (−x−1)

⇒ (−x)−1(xx−1) = (−x−1)

⇒ (−x)−11 = (−x−1)

⇒ (−x)−1 = (−x−1)

4 Proposition 1.5

(a) x > 0 ⇒ x + (−x) > (−x) ⇒ 0 > (−x)
x < 0 ⇒ x + (−x) < (−x) ⇒ 0 < (−x)

(b) 0 < x ⇒ z + 0 < z + x by Definition 1.8(i).
Then by transitivity, y < z < z + x ⇒ y < z + x

y < z ⇒ 0 < z − y.
Since x > 0, z − y > 0, we have x(z − y) > 0 ⇒ xz + x(−y) > 0 ⇒ xz > xy

(c) x < 0 ⇒ y + x < y + 0 by Definition 1.8(i).
Then by transitivity, y + x < y < z ⇒ y + x < z

y < z ⇒ 0 < z − y.
Since (−x) > 0, z− y > 0, we have (−x)(z− y) > 0 ⇒ (−x)z + (−x)(−y) > 0 ⇒
xy > xz

(d) For x > 0, xx > 0 ⇒ x2 > 0
For x < 0,(−x) > 0 ⇒ (−x)(−x) > 0 ⇒ x2 = (−x)(−x) > 0.

(e) First we show y−1 > 0 for y > 0.
By (d), (y−1)2 > 0, since y > 0, we have (y−1)2y > 0 ⇒ (y−1) = (y−1)(y−1)y > 0

We will prove by contradiction.
Suppose y−1 ≥ x−1, then since xy > 0 we get xy(y−1) ≥ xy(x−1) ⇒ x ≥ y which
contradicts to x < y, so y−1 < x−1.

5 Proposition 1.6

– proof of transitivity
If x, y, z ∈ X, x < y and y < z implies y−x ∈ X+ and z−y ∈ X+. By positivity
properties, we get (y− x) + (z− y) ∈ X+ . Therefore we have z− x ∈ X+ which
implies x < z.

– proof of trichotomy
x < y ⇔ y − x ∈ X+

y < x ⇔ −(y − x) = x− y ∈ X+

Since exactly one of y−x ∈ X+,−(y−x) ∈ X+, or y−x = 0 is true, exactly one
of x < y, y < x, or x = y is true.
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– proof of Definition 1.8 (i)
If x < y then y − x ∈ X+. But then we would have (y + z) − (x + z) =
y + z + (−z) + (−x) = y − x ∈ X+ which implies x + z < y + z.

– proof of Definition 1.8 (ii)
If x > 0 and y > 0, we have x = x− 0 ∈ X+ and y = y − 0 ∈ X+. By positivity
properties we get xy ∈ X+, which implies xy > 0.

From the first two proofs, we get that (X, <) is an ordered set. From the last
two proofs we get that X satisfies the definition of an ordered field.

6 Proposition 1.7

(a) For x > 0, |x| = x > 0.
For x = 0, |x| = 0.
For x < 0, |x| = −x > 0 (by Proposition 1.3(a)).
Hence |x| ≥ 0.

(b) x = 0 ⇒ |x| = 0 by definition.
If x 6= 0, then either x > 0 or x < 0.
For both cases |x| > 0, which means |x| 6= 0.
|x| = 0 ⇒ x = 0

(c) If x > 0, then |x| = x > 0 > −x.
If x < 0, then |x| = −x > 0 > x.
⇒ |x| ≥ x,
|x| ≥ −x.
Similarly, we have |y| ≥ y,
|y| ≥ −y.
Since |x+y| equals to (x+y) or −(x+y) = (−x)+(−y), we have |x+y| ≤ |x|+|y|
in any case.

(d) If x = 0, then |xy| = |0y| = 0 = |0||y| = |x||y|.
Same for if y = 0.
Divide the rest into four cases

∗ x > 0, y > 0
Then xy > 0
We get |x||y| = (x)(y) = (xy) = |xy|

∗ x > 0, y < 0
Then x(−y) > 0 ⇒ xy < 0
We get |x||y| = (x)(−y) = −(xy) = |xy|

∗ x < 0, y > 0
Then (−x)y > 0 ⇒ xy < 0
We get |x||y| = (−x)(y) = −(xy) = |xy|

∗ x < 0,y < 0 Then (−x)(−y) > 0 ⇒ xy > 0
We get |x||y| = (−x)(−y) = (xy) = |xy|

|x||y| = |xy| for all cases, so of course we have |x||y| ≥ |xy| for all cases.

(e) If x > 0, then (−x) < 0, so |x| = x = −(−x) = | − x|
If x = 0, then |x| = 0 = | − x|.
If x < 0, then (−x) > 0, so |x| = (−x) = | − x|.
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Therefore we have |x| = | − x| for all x.
By (c) we get |x| ≤ |x− y|+ |y| and |y| ≤ |y − x|+ |x|
⇒ |x− y| ≥ |x| − |y| and |x− y| = |y − x| ≥ |y| − |x|
If |x| − |y| = 0 then |x− y| ≥ 0 = ||x| − |y|| is automatically true.
If |x|−|y| > 0 then use the first equation and we get |x−y| ≥ |x|−|y| = ||x|−|y||
If |x| − |y| < 0 then use the second equation and we get |x − y| ≥= |y| − |x| =
−(|x| − |y|) = ||x| − |y||

We have then proved |x− y| ≥ ||x| − |y||.

7 Proposition 1.8
By the first assertion, there exists k, l ∈ Z+ such that −k < x < l. Then x ∈
(−k, l) ⊂ (−k, l]. We express (−k, l] as the union of l+m disjoint unit length intervals,
(−k, l] = ∪l

i=−k+1(i−1, i]. Since every interval is disjoint from each other, x ∈ (i−1, i]
for exactly one i = m. Since −k + 1 ≤ i ≤ l, we have −k ≤ m ≤ l such that
x ∈ (m− 1, m].
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