
1 Pick m=10.
Then 2−m = 1

1024
< 0.001,

also 2−k < 2−m < 0.001 ∀k > m.

2 Negation of A(xk) ultimately
⇒ ”∃m ∈ N such that ∀k > m A(xk)” is not true.
⇒ @m ∈ N such that ∀k > m A(xk)
⇒ ∀m ∈ N,∃k > m such that ”A(xk) is not true”
⇒∼ A(xk) frequently.

3 (i) Given any n ∈ N ∃r ∈ N such that 2πr > n+ π
3

(By the Archimedean property)
which means 2πr − π

3
> n

cos x > 0.5 for all x ∈ (2πr − π
3
, 2πr + π

3
)

since (2πr + π
3
)− (2πr − π

3
) = 2

3
π > 1

By proposition 1.8, ∃k ∈ Z such that k ∈ (2πr − π
3
, 2πr + π

3
).

That is, for any n ∈ N, we can find k ∈ N such that k > 2πr − π
3

> n, and
cos k > 0.5
⇒ cos k > 0.5 frequently as k →∞

(ii) Given any n ∈ N ∃r ∈ N such that 2πr > n− π
3

(By the Archimedean property)
which means 2πr + π

3
> n

cos x < 0.5 for all x ∈ (2πr + π
3
, 2πr + 5π

3
)

since (2πr + 5π
3

)− (2πr + π
3
) = 4

3
π > 1

By proposition 1.8, ∃k ∈ Z such that k ∈ (2πr + π
3
, 2πr + 5π

3
).

That is, for any n ∈ N, we can find k ∈ N such that k > 2πr + π
3

> n, and
cos k < 0.5
⇒ cos k < 0.5 frequently as k →∞
⇒ cos k > 0.5 not ultimately as k →∞

4 The first three terms of the subsequence {23k} are 20, 23, 26.
The first three terms of the subsequence {22k+1} are 21, 23, 25.

5 (=⇒)
∀m ∈ N,∃k > m such that A(xk)
Let n1 = 1.
∃n2 > n1 = 1 such that A(xn2).
Similarly, ∃n3 > n2 such that A(xn3).
Inductively, we can get a sequence of indices {nk} such that nk < nk+1 and A(xnk

)
for all k > 0.
We have found a subsequence {xnk

} such that A(xnk
) ultimately as k →∞.

(⇐=)
If A(xnk

) ultimately,
⇒ ∃m ∈ N such that ∀q > m, we have A(xnq).
Now, given any n ∈ N, We can find k ∈ N such that k > max{n, m},
then nk > nm > m
(Since nk − nk−1 > 1 ⇒ nk =

∑k−2
l=0 (nk−l − nk−l−1) > (k − 1) + n1 = k)

Then we have found nk ∈ N such that nk > n and A(xnk
)

This proves that A(xk) frequently

6 sequence diverges ⇔ sequence does not converge
⇔ the statement ”∃a ∈ R such that ∀ε > 0, one has |ak−a| < ε ultimately as k →∞”
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is false.
⇔ ∀a ∈ R there exists some εa > 0 such that the statement ”|ak− a| < εa ultimately
as k →∞” is false.
⇔ ∀a ∈ R there exists some εa > 0 such that ”|ak − a| > εa frequently as k →∞”.

7 (i) {ak} converges to a
Given any ε > 0
⇒ |ak − a| < ε

2
ultimately as k →∞

⇒ ∃m ∈ N such that for all k > m, we have |ak − a| < ε
2

Similarly,
∃m′ ∈ N such that for all k > m′, we have |bk − b| < ε

2

Let M = max{m, m′}, then
|(ak + bk)− (a + b)| 6 |ak − a|+ |bk − b| < ε

2
+ ε

2
∀k > M

⇒ |(ak + bk)− (a + b)| < ε ultimately as k →∞
since ε is arbitrary,
⇒ ak + bk → a + b

(ii) {ak} converges to a
Given any ε > 0
⇒ ∃m ∈ N such that for all k > m, we have |ak − a| < ε
But then,
|(−ak)− (−a)| − |ak − a| < ε ∀k > m
⇒ |(−ak)− (−a)| < ε ultimately as k →∞
⇒ −ak → −a

(iv) {ak} converges to a
Given any ε > 0
⇒ ∃m ∈ N such that for all k > m, we have |ak − a| < ε

⇒ ∃m1 such that for all k > m1, we have |ak − a| 6 |a|
2

,

that is, for k > m1 we have |ak| > |a|
2

.

∃m2 such that for all k > m2, we have |ak − a| 6 |a|2
2ε

Let m = max{m1, m2},
then, | 1

ak
− 1

a
| = |ak−a

aka
| 6 2|ak−a|

|a|2 < ε ∀k > m

(v) Suppose the contrary that a > b,
Let ε = a−b

2

Since ak → a and bk → b as k →∞,
for some m we have ak > a− ε and bk < b + ε for all k > m.
Then we have ak > a− ε = a+b

2
= b + ε > bk for all k > m,

which contradicts with ak 6 bk frequently.

So a 6 b.

(8) {ak} diverges
⇒ {ak} does not converge.
By (i), {ak} is not bounded above (bounded below).
⇒ for all b ∈ R and N ∈ N ∃k > Nsuch that ak > b (ak < b).
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⇒for all b ∈ R one has that ak > b (ak < b) ultimately as k →∞
⇒ limk→∞ ak = ∞ (limk→∞ ak = −∞)

(9) (a) If lim inf{ak} = −∞ or lim inf{bn} = −∞, then the inequality is automatically
true.
So we are left to consider when both lim inf{ak} > −∞ and lim inf{bk} > −∞ is
true.

ak = inf{al : l > k}
bk = inf{bl : l > k}

ak + bk = inf{al + bl : l > k}

Fix k,
ak 6 al ∀l > k
bk 6 bl ∀l > k
⇒ ak + bk 6 al + bl ∀l > k
⇒ ak + bk is a lower bound of al + bl

⇒ ak + bk 6 ak + bk (since ak + bk is the greatest lower bound of al + bl.)
This is true for all k ∈ N

We can apply Proposition 2.4(i) and get
lim ak + lim bk 6 lim(ak + bk)
⇒ lim infk→∞ ak + lim infk→∞ bk 6 lim infk→ ak + bk

By the proof above, given any two sequences {ak} and {bk}
we have for sequences {−ak} and {−bk},
lim−ak + lim−bk 6 lim (−ak) + (−bk) = lim−(ak + bk)

We can observe that −ak = −ak

⇒ lim(−ak) + lim(−bk) 6 lim(−ak + bk)

⇒ lim supk→∞ ak + lim supk→∞ bk > lim sup→∞(ak + bk)

(b) Since ak 6 bk ultimately,
∃N ∈ N such that ak 6 bk ∀k > N
Since ak 6 ak ∀k
⇒ ak 6 bk ∀k > N
⇒ ak 6 bk ∀k > N (Since bk is the greatest lower bound for bl, l > k)
Taking the limit on both sides,we get
lim ak 6 lim bk ⇒ lim infk→∞ ak 6 lim infk→∞ bk

Similarly, we can prove lim supk→∞ ak 6 lim supk→∞ bk.

(10) From n1 < n2 < · · · < nk we can observe that k 6 nk

∴ {al| l > k} ⊃ {al| l > nk}
ak 6 ank

taking the limit on both sides,we have
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lim ak 6 lim ank
⇒ lim infk→∞ ak 6 lim infk→∞ ank

To prove lim supk→∞ ank
6 lim supk→∞ ak,

we substitute the sequences {−ak} and {−ank
} into the previous inequality obtained.

(11) For a bounded sequence {ak}, we have
lim supk→∞ ak < ∞.
By the second part of Proposition 2.8,
there exists a subsequence {ank

} such that
limk→∞ ank

= lim supk→∞ ak < ∞
Then {ank

} is a convergent subsequence.
We have proved that a convergent subsequence always exists.

(12) Let sn =
∑n

k=0 ak.∑∞
k=o converges implies that limn→∞ sn = s for some s ∈ R.

⇒ limn→∞ an = limn→∞(sn − sn−1) = limn→∞ sn − limn→∞ sn−1 = s− s = 0

(13) (a) There does not exist an example except for the case where bk = 0 ultimately as
k →∞
If we don’t have bk = 0 ultimately then ak 6 Mbk ultimately implies ak

bk
6 M

ultimately.
⇒ lim supk→∞

ak

bk
= M < ∞

So if direct comparison test applies, limit comparison test also applies.

(b) Letak = 1
k2 and let bk = 1

(k−1)2

lim supk→∞
ak

bk
= limk→∞(k−1

k
)2 = 1 < ∞

but ak+1

ak
= ( k

k+1
)2 > (k−1

k
)2 = bk+1

bk
∀k

So here, the limit comparison test applies, but the ratio comparison test fails.

(14) Let ak = 1, then lim sup k
√

ak = 1∑∞
k=0 ak diverges.

Let bk = 1
k2 , then lim sup k

√
bk = 1∑∞

k=0 bk converges.

(15) proven in class

(16) Let lim infk→∞
ak+1

ak
= r

Pick any ρ < r,
∃N ∈ N such that ρ < ak+1

ak
∀k > N

⇒ ak+1 > ρak ∀k > N
⇒ ak > ρk−NaN ∀k > N

⇒ k
√

ak > k
√

ρk−NaN = k
√

ρk k

√
aN

ρN = ρ k
√

c, where c is a constant.

lim infk→∞ k
√

ak > ρ k
√

c = ρ
Since ρ can be taken arbitrary close to r
lim infk→∞ k

√
ak > r = lim infk→∞

ak+1

ak

we have proven the left inequality.
The right inequality is proven the same way.
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