1 Pick $\mathrm{m}=10$.
Then $2^{-m}=\frac{1}{1024}<0.001$,
also $2^{-k}<2^{-m}<0.001 \quad \forall k>m$.
2 Negation of $\mathcal{A}\left(x_{k}\right)$ ultimately
$\Rightarrow " \exists m \in \mathbb{N}$ such that $\forall k>m \mathcal{A}\left(x_{k}\right) "$ is not true.
$\Rightarrow \nexists m \in \mathbb{N}$ such that $\forall k>m \mathcal{A}\left(x_{k}\right)$
$\Rightarrow \forall m \in \mathbb{N}, \exists k>m$ such that $" \mathcal{A}\left(x_{k}\right)$ is not true"
$\Rightarrow \sim \mathcal{A}\left(x_{k}\right)$ frequently.
3 (i) Given any $n \in \mathbb{N} \quad \exists r \in \mathbb{N}$ such that $2 \pi r>n+\frac{\pi}{3}$ (By the Archimedean property) which means $2 \pi r-\frac{\pi}{3}>n$
$\cos x>0.5$ for all $x \in\left(2 \pi r-\frac{\pi}{3}, 2 \pi r+\frac{\pi}{3}\right)$
since $\left(2 \pi r+\frac{\pi}{3}\right)-\left(2 \pi r-\frac{\pi}{3}\right)=\frac{2}{3} \pi>1$
By proposition 1.8, $\exists k \in \mathbb{Z}$ such that $k \in\left(2 \pi r-\frac{\pi}{3}, 2 \pi r+\frac{\pi}{3}\right)$.
That is, for any $n \in \mathbb{N}$, we can find $k \in \mathbb{N}$ such that $k>2 \pi r-\frac{\pi}{3}>n$, and $\cos k>0.5$
$\Rightarrow \cos k>0.5$ frequently as $k \rightarrow \infty$
(ii) Given any $n \in \mathbb{N} \quad \exists r \in \mathbb{N}$ such that $2 \pi r>n-\frac{\pi}{3}$ (By the Archimedean property) which means $2 \pi r+\frac{\pi}{3}>n$
$\cos x<0.5$ for all $x \in\left(2 \pi r+\frac{\pi}{3}, 2 \pi r+\frac{5 \pi}{3}\right)$
since $\left(2 \pi r+\frac{5 \pi}{3}\right)-\left(2 \pi r+\frac{\pi}{3}\right)=\frac{4}{3} \pi>1$
By proposition $1.8, \exists k \in \mathbb{Z}$ such that $k \in\left(2 \pi r+\frac{\pi}{3}, 2 \pi r+\frac{5 \pi}{3}\right)$.
That is, for any $n \in \mathbb{N}$, we can find $k \in \mathbb{N}$ such that $k>2 \pi r+\frac{\pi}{3}>n$, and $\cos k<0.5$
$\Rightarrow \cos k<0.5$ frequently as $k \rightarrow \infty$
$\Rightarrow \cos k>0.5$ not ultimately as $k \rightarrow \infty$
4 The first three terms of the subsequence $\left\{2^{3 k}\right\}$ are $2^{0}, 2^{3}, 2^{6}$.
The first three terms of the subsequence $\left\{2^{2 k+1}\right\}$ are $2^{1}, 2^{3}, 2^{5}$.
$5(\Longrightarrow)$
$\forall m \in \mathbb{N}, \exists k>m$ such that $\mathcal{A}\left(x_{k}\right)$
Let $n_{1}=1$.
$\exists n_{2}>n_{1}=1$ such that $\mathcal{A}\left(x_{n_{2}}\right)$.
Similarly, $\exists n_{3}>n_{2}$ such that $\mathcal{A}\left(x_{n_{3}}\right)$.
Inductively, we can get a sequence of indices $\left\{n_{k}\right\}$ such that $n_{k}<n_{k+1}$ and $\mathcal{A}\left(x_{n_{k}}\right)$ for all $k>0$.
We have found a subsequence $\left\{x_{n_{k}}\right\}$ such that $\mathcal{A}\left(x_{n_{k}}\right)$ ultimately as $k \rightarrow \infty$.
(\Longleftarrow)
If $\mathcal{A}\left(x_{n_{k}}\right)$ ultimately,
$\Rightarrow \exists m \in \mathbb{N}$ such that $\forall q>m$, we have $\mathcal{A}\left(x_{n_{q}}\right)$.
Now, given any $n \in \mathbb{N}$, We can find $k \in \mathbb{N}$ such that $k>\max \{n, m\}$,
then $n_{k}>n_{m} \geqslant m$
(Since $n_{k}-n_{k-1} \geqslant 1 \Rightarrow n_{k}=\sum_{l=0}^{k-2}\left(n_{k-l}-n_{k-l-1}\right) \geqslant(k-1)+n_{1}=k$)
Then we have found $n_{k} \in \mathbb{N}$ such that $n_{k}>n$ and $\mathcal{A}\left(x_{n_{k}}\right)$
This proves that $\mathcal{A}\left(x_{k}\right)$ frequently
6 sequence diverges \Leftrightarrow sequence does not converge
\Leftrightarrow the statement " $\exists a \in \mathbb{R}$ such that $\forall \epsilon>0$, one has $\left|a_{k}-a\right|<\epsilon$ ultimately as $k \rightarrow \infty$ "
is false.
$\Leftrightarrow \forall a \in \mathbb{R}$ there exists some $\epsilon_{a}>0$ such that the statement " $\left|a_{k}-a\right|<\epsilon_{a}$ ultimately as $k \rightarrow \infty$ " is false.
$\Leftrightarrow \quad \forall a \in \mathbb{R}$ there exists some $\epsilon_{a}>0$ such that " $\left|a_{k}-a\right|>\epsilon_{a}$ frequently as $k \rightarrow \infty$ ".
7 (i) $\left\{a_{k}\right\}$ converges to a
Given any $\epsilon>0$
$\Rightarrow\left|a_{k}-a\right|<\frac{\epsilon}{2}$ ultimately as $k \rightarrow \infty$
$\Rightarrow \quad \exists m \in \mathbb{N}$ such that for all $k>m$, we have $\left|a_{k}-a\right|<\frac{\epsilon}{2}$
Similarly,
$\exists m^{\prime} \in \mathbb{N}$ such that for all $k>m^{\prime}$, we have $\left|b_{k}-b\right|<\frac{\epsilon}{2}$
Let $M=\max \left\{m, m^{\prime}\right\}$, then
$\left|\left(a_{k}+b_{k}\right)-(a+b)\right| \leqslant\left|a_{k}-a\right|+\left|b_{k}-b\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2} \quad \forall k>M$
$\Rightarrow\left|\left(a_{k}+b_{k}\right)-(a+b)\right|<\epsilon$ ultimately as $k \rightarrow \infty$
since ϵ is arbitrary,
$\Rightarrow \quad a_{k}+b_{k} \rightarrow a+b$
(ii) $\left\{a_{k}\right\}$ converges to a

Given any $\epsilon>0$
$\Rightarrow \exists m \in \mathbb{N}$ such that for all $k>m$, we have $\left|a_{k}-a\right|<\epsilon$
But then,
$\left|\left(-a_{k}\right)-(-a)\right|-\left|a_{k}-a\right|<\epsilon \quad \forall k>m$
$\Rightarrow\left|\left(-a_{k}\right)-(-a)\right|<\epsilon$ ultimately as $k \rightarrow \infty$
$\Rightarrow \quad-a_{k} \rightarrow-a$
(iv) $\left\{a_{k}\right\}$ converges to a

Given any $\epsilon>0$
$\Rightarrow \exists m \in \mathbb{N}$ such that for all $k>m$, we have $\left|a_{k}-a\right|<\epsilon$
$\Rightarrow \exists m_{1}$ such that for all $k>m_{1}$, we have $\left|a_{k}-a\right| \leqslant \frac{|a|}{2}$,
that is, for $k>m_{1}$ we have $\left|a_{k}\right|>\frac{|a|}{2}$.
$\exists m_{2}$ such that for all $k>m_{2}$, we have $\left|a_{k}-a\right| \leqslant \frac{|a|^{2}}{2 \epsilon}$
Let $m=\max \left\{m_{1}, m_{2}\right\}$,
then, $\left|\frac{1}{a_{k}}-\frac{1}{a}\right|=\left|\frac{a_{k}-a}{a_{k} a}\right| \leqslant \frac{2\left|a_{k}-a\right|}{|a|^{2}}<\epsilon \quad \forall k>m$
(v) Suppose the contrary that $a>b$,

Let $\epsilon=\frac{a-b}{2}$
Since $a_{k} \rightarrow a$ and $b_{k} \rightarrow b$ as $k \rightarrow \infty$,
for some m we have $a_{k}>a-\epsilon$ and $b_{k}<b+\epsilon$ for all $k>m$.
Then we have $a_{k}>a-\epsilon=\frac{a+b}{2}=b+\epsilon>b_{k}$ for all $k>m$, which contradicts with $a_{k} \leqslant b_{k}$ frequently.

So $a \leqslant b$.
(8) $\left\{a_{k}\right\}$ diverges
$\Rightarrow \quad\left\{a_{k}\right\}$ does not converge.
By (i), $\left\{a_{k}\right\}$ is not bounded above (bounded below).
\Rightarrow for all $b \in \mathbb{R}$ and $N \in \mathbb{N} \exists k>N$ such that $a_{k}>b\left(a_{k}<b\right)$.
\Rightarrow for all $b \in \mathbb{R}$ one has that $a_{k}>b\left(a_{k}<b\right)$ ultimately as $k \rightarrow \infty$
$\Rightarrow \lim _{k \rightarrow \infty} a_{k}=\infty \quad\left(\lim _{k \rightarrow \infty} a_{k}=-\infty\right)$
(9) (a) If $\liminf \left\{a_{k}\right\}=-\infty$ or $\lim \inf \left\{b_{n}\right\}=-\infty$, then the inequality is automatically true.
So we are left to consider when both $\liminf \left\{a_{k}\right\}>-\infty$ and $\liminf \left\{b_{k}\right\}>-\infty$ is true.
$\underline{a_{k}}=\inf \left\{a_{l}: l \geqslant k\right\}$
$\underline{\underline{a_{k}}}=\inf \left\{b_{l}: l \geqslant k\right\}$
$\underline{a_{k}+b_{k}}=\inf \left\{a_{l}+b_{l}: l \geqslant k\right\}$
Fix k,
$a_{k} \leqslant a_{l} \quad \forall l \geqslant k$
$\underline{b_{k}} \leqslant b_{l} \quad \forall l \geqslant k$
$\Rightarrow \underline{a_{k}}+\underline{b_{k}} \leqslant a_{l}+b_{l} \quad \forall l \geqslant k$
$\Rightarrow \underline{a_{k}}+\underline{b_{k}}$ is a lower bound of $a_{l}+b_{l}$
$\Rightarrow \overline{a_{k}}+\underline{b_{k}} \leqslant \underline{a_{k}}+b_{k}$ (since $\underline{a_{k}}+b_{k}$ is the greatest lower bound of $a_{l}+b_{l}$.)
This is true for all $k \in \mathbb{N}$

We can apply Proposition 2.4(i) and get
$\lim \underline{a_{k}}+\lim \underline{b_{k}} \leqslant \lim \left(\underline{a_{k}+b_{k}}\right)$
$\Rightarrow \liminf { }_{k \rightarrow \infty} a_{k}+\liminf _{k \rightarrow \infty} b_{k} \leqslant \liminf \inf _{k \rightarrow} a_{k}+b_{k}$
By the proof above, given any two sequences $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$
we have for sequences $\left\{-a_{k}\right\}$ and $\left\{-b_{k}\right\}$,
$\lim \underline{-a_{k}}+\lim \underline{-b_{k}} \leqslant \lim \underline{\left(-a_{k}\right)+\left(-b_{k}\right)}=\lim \underline{-\left(a_{k}+b_{k}\right)}$
We can observe that $-\underline{a_{k}}=-\overline{a_{k}}$

$$
\begin{aligned}
& \Rightarrow \lim \left(-\overline{a_{k}}\right)+\lim \left(-\overline{b_{k}}\right) \leqslant \lim \left(-\overline{a_{k}+b_{k}}\right) \\
& \Rightarrow \lim \sup _{k \rightarrow \infty} a_{k}+\lim \sup _{k \rightarrow \infty} b_{k} \geqslant \lim \sup _{\rightarrow \infty}\left(a_{k}+b_{k}\right)
\end{aligned}
$$

(b) Since $a_{k} \leqslant b_{k}$ ultimately,
$\exists N \in \mathbb{N}$ such that $a_{k} \leqslant b_{k} \quad \forall k>N$
Since $\underline{a_{k}} \leqslant a_{k} \quad \forall k$
$\Rightarrow a_{k} \leqslant b_{k} \quad \forall k>N$
$\Rightarrow \overline{a_{k}} \leqslant \underline{b_{k}} \forall k>N$ (Since $\underline{b_{k}}$ is the greatest lower bound for $\left.b_{l}, l>k\right)$
Taking the limit on both sides, we get
$\lim \underline{a_{k}} \leqslant \lim \underline{b_{k}} \Rightarrow \liminf _{k \rightarrow \infty} a_{k} \leqslant \liminf _{k \rightarrow \infty} b_{k}$
Similarly, we can prove $\lim \sup _{k \rightarrow \infty} a_{k} \leqslant \lim \sup _{k \rightarrow \infty} b_{k}$.
(10) From $n_{1}<n_{2}<\cdots<n_{k}$ we can observe that $k \leqslant n_{k}$
$\therefore\left\{a_{l} \mid l \geqslant k\right\} \supset\left\{a_{l} \mid l \geqslant n_{k}\right\}$
$\underline{a_{k}} \leqslant \underline{a_{n_{k}}}$
taking the limit on both sides, we have
$\lim \underline{a_{k}} \leqslant \lim \underline{a_{n_{k}}} \Rightarrow \liminf _{k \rightarrow \infty} a_{k} \leqslant \lim \inf _{k \rightarrow \infty} a_{n_{k}}$
To prove $\limsup _{k \rightarrow \infty} a_{n_{k}} \leqslant \lim \sup _{k \rightarrow \infty} a_{k}$,
we substitute the sequences $\left\{-a_{k}\right\}$ and $\left\{-a_{n_{k}}\right\}$ into the previous inequality obtained.
(11) For a bounded sequence $\left\{a_{k}\right\}$, we have
$\lim \sup _{k \rightarrow \infty} a_{k}<\infty$.
By the second part of Proposition 2.8,
there exists a subsequence $\left\{a_{n_{k}}\right\}$ such that
$\lim _{k \rightarrow \infty} a_{n_{k}}=\lim \sup _{k \rightarrow \infty} a_{k}<\infty$
Then $\left\{a_{n_{k}}\right\}$ is a convergent subsequence.
We have proved that a convergent subsequence always exists.
(12) Let $s_{n}=\sum_{k=0}^{n} a_{k}$.
$\sum_{k=o}^{\infty}$ converges implies that $\lim _{n \rightarrow \infty} s_{n}=s$ for some $s \in \mathbb{R}$.
$\Rightarrow \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=s-s=0$
(13) (a) There does not exist an example except for the case where $b_{k}=0$ ultimately as $k \rightarrow \infty$
If we don't have $b_{k}=0$ ultimately then $a_{k} \leqslant M b_{k}$ ultimately implies $\frac{a_{k}}{b_{k}} \leqslant M$ ultimately.
$\Rightarrow \lim \sup _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=M<\infty$
So if direct comparison test applies, limit comparison test also applies.
(b) Let $a_{k}=\frac{1}{k^{2}}$ and let $b_{k}=\frac{1}{(k-1)^{2}}$
$\lim \sup _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty}\left(\frac{k-1}{k}\right)^{2}=1<\infty$
but $\frac{a_{k+1}}{a_{k}}=\left(\frac{k}{k+1}\right)^{2}>\left(\frac{k-1}{k}\right)^{2}=\frac{b_{k+1}}{b_{k}} \quad \forall k$
So here, the limit comparison test applies, but the ratio comparison test fails.
(14) Let $a_{k}=1$, then limsup $\sqrt[k]{a_{k}}=1$
$\sum_{k=0}^{\infty} a_{k}$ diverges.

Let $b_{k}=\frac{1}{k^{2}}$, then limsup $\sqrt[k]{b_{k}}=1$
$\sum_{k=0}^{\infty} b_{k}$ converges.
(15) proven in class
(16) Let $\liminf _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=r$

Pick any $\rho<r$,
$\exists N \in \mathbb{N}$ such that $\rho<\frac{a_{k+1}}{a_{k}} \quad \forall k>N$
$\Rightarrow a_{k+1} \geqslant \rho a_{k} \quad \forall k>N$
$\Rightarrow a_{k} \geqslant \rho^{k-N} a_{N} \forall k>N$
$\Rightarrow \sqrt[k]{a_{k}} \geqslant \sqrt[k]{\rho^{k-N} a_{N}}=\sqrt[k]{\rho^{k}} \sqrt[k]{\frac{a_{N}}{\rho^{N}}}=\rho \sqrt[k]{c}$, where c is a constant.
$\liminf _{k \rightarrow \infty} \sqrt[k]{a_{k}} \geqslant \rho \sqrt[k]{c}=\rho$
Since ρ can be taken arbitrary close to r
$\lim \inf _{k \rightarrow \infty} \sqrt[k]{a_{k}} \geqslant r=\liminf _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}$
we have proven the left inequality.
The right inequality is proven the same way.

