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Pick m=10.
Then 27 = 52 < 0.001,
also 27 < 27™ < 0.001 Vk > m.

Negation of A(xy) ultimately

= 7dm € N such that Vk > m A(x)” is not true.
= Pm € N such that Vk > m A(x;)

= Vm € N, 3k > m such that " A(zy) is not true”
=~ A(zy) frequently.

(i) Given any n € N Jr € N such that 277 > n+ % (By the Archimedean property)
which means 277 — £ >n
cosz > 0.5 for all x € (2mr — I, 277 + %)
since (2mr 4+ %) — (2nr — §) = 37 > 1
By proposition 1.8, 3k € Z such that k € (27 — %, 277 + 7).
That is, for any n € N, we can find k£ € N such that & > 27r — 2 > n, and
cosk > 0.5
= cos k > 0.5 frequently as k — oo

(ii) Given anyn € N 3Jr € Nsuch that 27r > n— I (By the Archimedean property)
which means 27r + 3 > n
cosz < 0.5 for all z € (2mr 4+ %, 27 + )
since (2mr 4+ 2F) — (27 + §) = 37 > 1
By proposition 1.8, 3k € Z such that k € (2mr + %, 277 + 5?”)
That is, for any n € N, we can find k£ € N such that k¥ > 27r + £ > n, and
cosk < 0.5
= cosk < 0.5 frequently as k — oo
= cosk > 0.5 not ultimately as k — oo

The first three terms of the subsequence {23} are 20,23 26
The first three terms of the subsequence {2%7+1} are 21,23 25.

(=)
Vm € N, 3k > m such that A(xy)
Let ny = 1.

dng > ny = 1 such that A(z,,).

Similarly, Ins > ny such that A(z,,).

Inductively, we can get a sequence of indices {ny} such that ny < ngy1 and A(z,,)
for all k£ > 0.

We have found a subsequence {xz,, } such that A(z,,) ultimately as k — oo.

(=)

If A(z,,) ultimately,

= dm € N such that Vg > m, we have A(z,,).

Now, given any n € N, We can find k£ € N such that k£ > max{n, m},
then n, > n,, > m

(Since N —Ng_—1 = 1= ng = Zf:_g(nk_l - nk_l_l) = (lf - 1) +ny = ]{3)
Then we have found ny € N such that ny > n and A(x,, )

This proves that A(zy) frequently

sequence diverges < sequence does not converge
& the statement ”Ja € R such that Ve > 0, one has |ay —a| < € ultimately as k — 00”
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is false.

< Va € R there exists some ¢, > 0 such that the statement ”|ay — a| < €, ultimately
as k — oo” is false.

< Va € R there exists some €, > 0 such that ”|ax — a|] > €, frequently as k — o0”.

7 (i) {axr} converges to a
Given any € > 0
= |ay —a| < § ultimately as k — oo
= Jm € N such that for all & > m, we have |ay —a| < §
Similarly,
Im’ € N such that for all & > m’, we have [b, — b < §

Let M = max{m,m'}, then

|(ax +bi) — (a+b)| < |ag —al + b =0 < 5+5 VE>M
= |(ar + b)) — (a + b)| < € ultimately as k — oo

since € is arbitrary,

= ap+b,—a+b

(i) {axr} converges to a
Given any € > 0
= Im € N such that for all k£ > m, we have |a, — a|] <€
But then,
|(—ar) — (—a)| — |ax, —a| <€ VE>m
= [(—ax) — (—a)| < e ultimately as k — oo
=  —ar — —a

(iv) {ax} converges to a
Given any € > 0
= Im € N such that for all £ > m, we have |a; — a|] <€
la]

= Jmy such that for all k& > my, we have |a; —a| < 5,

that is, for £ > m; we have |ay| > %
al?

dmy such that for all & > my, we have |a; — a| < %

Let m = max{m;, msy},
then, ]i—%|:|m\§M<e Vk >m

ag aka |al?
(v) Suppose the contrary that a > b,
Let € = “T_b
Since a; — a and b, — b as k — o0,
for some m we have a;, > a — € and b, < b+ € for all £ > m.
Then we have ay, >a—e:“7+b:b—|—e>bk for all £ > m,

which contradicts with a;, < by frequently.

Soa <b.

(8) {ax} diverges
= {ax} does not converge.
By (i), {ax} is not bounded above (bounded below).
= forall b€ Rand N € N 3k > Nsuch that ay > b (ar < b).
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=for all b € R one has that a; > b (a; < b) ultimately as k — oo
= limg o ap =00  (limg_o ap = —00)

(9) (a) If liminf{a,} = —oo or liminf{b,} = —oo, then the inequality is automatically
true.
So we are left to consider when both lim inf{a} > —oo and liminf{b;} > —o0 is
true.

ap = inf{a; : 1 > k}
by = inf{b; : | > k}

ak+bk:inf{al+bl:l>k}

Fix k,

ap<a Vl=k

by <b VIZ>k

i%—i—@éal—l—bl V> k

= ay, + by, is a lower bound of a; + b

= ay, + by, < ai + by (since ag + by is the greatest lower bound of a; + b;.)
This is true for all £ € N

We can apply Proposition 2.4(i) and get
lim ay, + lim by, < lim(ay, + bk)
= liminf,_ . a; + liminf,_ . b, <liminf,_ a; + by

By the proof above, given any two sequences {ax} and {b}
we have for sequences {—ay} and {—b;},
lim —ay, + lim —b, < lim (—ay) + (—=by) = lim —(ay, + by)

We can observe that —a, = —ay,
= lim(—ay) + lim(—bg) < lim(—ay, + by,

= limsup;,_,, ar + limsup,_, . by = limsup_, _(ax + by)

(b) Since a;, < by ultimately,
AN € N such that a, < b, Vk > N
Since a, < ap VK
=ap <by VE>N
= ap < by Vk > N (Since b is the greatest lower bound for b;, [ > k)
Taking the limit on both sides,we get
lim a;, < lim by = liminf, . ap < liminf,_. by

Similarly, we can prove lim sup,,_, ., a; < limsup,_, bg.

(10) From n; < ng < --- < ny we can observe that k < ny,
{al\ [ > k} D) {al| [ > nk}
g < Qny,
taking the limit on both sides,we have



(11)

(12)

(13)

(14)

limay, < lima,, = liminf;_ . a; < liminfy .o a,,

To prove limsup,,_, ., an, < limsup,_, . ax,
we substitute the sequences {—ay} and {—a,, } into the previous inequality obtained.

For a bounded sequence {ay}, we have

lim sup,,_, ., ar < oo.

By the second part of Proposition 2.8,

there exists a subsequence {a,, } such that

limy_o0 @p, = limsup,_, . ar < 00

Then {a,, } is a convergent subsequence.

We have proved that a convergent subsequence always exists.

n
Lei;osn = o Q-
> re, converges implies that lim,_. s, = s for some s € R.
= lim,, o0 @, = limy, oo (S5, — Spo1) = limy, oo S — limy, 0o 8,1 =5 —5=0

(a) There does not exist an example except for the case where by, = 0 ultimately as
k — oo
If we don’t have b, = 0 ultimately then a, < Mb; ultimately implies Z—: <M
ultimately.

= limsup,_, 35 = M < o0
So if direct comparison test applies, limit comparison test also applies.

(b) Letak = k_12 and let bk = (kjl)Q
limsup,,_, & = limy oo (B1)? =1 < 00

a _ b
bu %t = ()2 > (k)2 = bt g

So here, the limit comparison test applies, but the ratio comparison test fails.

Let a;, = 1, then limsup a, = 1
> re o a diverges.

Let b, = #, then limsup v/b;, = 1
> e b converges.

proven in class

Ak41
ag

Let lim inf;_ o
Pick any p < r,
3N € N such that p < =22 VE > N
= agy1 = pa Yk > N

= a, = p" Nay Vk>N

= Yar, = /pFNay = I/ pF R = p/c, where ¢ is a constant.

liminfy o ar = p¥/c=p

Since p can be taken arbitrary close to r
lim infy .o ay > r = liminf,_,,, =

we have proven the left inequality.

The right inequality is proven the same way.
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