- 1 Pick m=10. Then $2^{-m} = \frac{1}{1024} < 0.001$, also $2^{-k} < 2^{-m} < 0.001 \quad \forall k > m$.
- 2 Negation of $\mathcal{A}(x_k)$ ultimately \Rightarrow " $\exists m \in \mathbb{N}$ such that $\forall k > m \quad \mathcal{A}(x_k)$ " is not true. $\Rightarrow \nexists m \in \mathbb{N}$ such that $\forall k > m \quad \mathcal{A}(x_k)$ $\Rightarrow \forall m \in \mathbb{N}, \exists k > m$ such that " $\mathcal{A}(x_k)$ is not true" $\Rightarrow \sim \mathcal{A}(x_k)$ frequently.
- 3 (i) Given any $n \in \mathbb{N}$ $\exists r \in \mathbb{N}$ such that $2\pi r > n + \frac{\pi}{3}$ (By the Archimedean property) which means $2\pi r - \frac{\pi}{3} > n$ $\cos x > 0.5$ for all $x \in (2\pi r - \frac{\pi}{3}, 2\pi r + \frac{\pi}{3})$ since $(2\pi r + \frac{\pi}{3}) - (2\pi r - \frac{\pi}{3}) = \frac{2}{3}\pi > 1$ By proposition 1.8, $\exists k \in \mathbb{Z}$ such that $k \in (2\pi r - \frac{\pi}{3}, 2\pi r + \frac{\pi}{3})$. That is, for any $n \in \mathbb{N}$, we can find $k \in \mathbb{N}$ such that $k > 2\pi r - \frac{\pi}{3} > n$, and $\cos k > 0.5$ $\Rightarrow \cos k > 0.5$ frequently as $k \to \infty$
 - (ii) Given any $n \in \mathbb{N}$ $\exists r \in \mathbb{N}$ such that $2\pi r > n \frac{\pi}{3}$ (By the Archimedean property) which means $2\pi r + \frac{\pi}{3} > n$ $\cos x < 0.5$ for all $x \in (2\pi r + \frac{\pi}{3}, 2\pi r + \frac{5\pi}{3})$ since $(2\pi r + \frac{5\pi}{3}) - (2\pi r + \frac{\pi}{3}) = \frac{4}{3}\pi > 1$ By proposition 1.8, $\exists k \in \mathbb{Z}$ such that $k \in (2\pi r + \frac{\pi}{3}, 2\pi r + \frac{5\pi}{3})$. That is, for any $n \in \mathbb{N}$, we can find $k \in \mathbb{N}$ such that $k > 2\pi r + \frac{\pi}{3} > n$, and $\cos k < 0.5$ $\Rightarrow \cos k < 0.5$ frequently as $k \to \infty$ $\Rightarrow \cos k > 0.5$ not ultimately as $k \to \infty$
- 4 The first three terms of the subsequence $\{2^{3k}\}$ are $2^0, 2^3, 2^6$. The first three terms of the subsequence $\{2^{2k+1}\}$ are $2^1, 2^3, 2^5$.
- $5 \iff$

 $\forall m \in \mathbb{N}, \exists k > m \text{ such that } \mathcal{A}(x_k)$ Let $n_1 = 1$. $\exists n_2 > n_1 = 1 \text{ such that } \mathcal{A}(x_{n_2}).$ Similarly, $\exists n_3 > n_2$ such that $\mathcal{A}(x_{n_3}).$ Inductively, we can get a sequence of indices $\{n_k\}$ such that $n_k < n_{k+1}$ and $\mathcal{A}(x_{n_k})$ for all k > 0. We have found a subsequence $\{x_{n_k}\}$ such that $\mathcal{A}(x_{n_k})$ ultimately as $k \to \infty$.

 (\Leftarrow) If $\mathcal{A}(x_{n_k})$ ultimately, $\Rightarrow \exists m \in \mathbb{N}$ such that $\forall q > m$, we have $\mathcal{A}(x_{n_q})$. Now, given any $n \in \mathbb{N}$, We can find $k \in \mathbb{N}$ such that $k > \max\{n, m\}$, then $n_k > n_m \ge m$ (Since $n_k - n_{k-1} \ge 1 \Rightarrow n_k = \sum_{l=0}^{k-2} (n_{k-l} - n_{k-l-1}) \ge (k-1) + n_1 = k$) Then we have found $n_k \in \mathbb{N}$ such that $n_k > n$ and $\mathcal{A}(x_{n_k})$ This proves that $\mathcal{A}(x_k)$ frequently

6 sequence diverges \Leftrightarrow sequence does not converge \Leftrightarrow the statement " $\exists a \in \mathbb{R}$ such that $\forall \epsilon > 0$, one has $|a_k - a| < \epsilon$ ultimately as $k \to \infty$ "

is false.

 $\Leftrightarrow \forall a \in \mathbb{R} \text{ there exists some } \epsilon_a > 0 \text{ such that the statement "} |a_k - a| < \epsilon_a \text{ ultimately as } k \to \infty$ " is false.

 $\Leftrightarrow \quad \forall a \in \mathbb{R} \text{ there exists some } \epsilon_a > 0 \text{ such that } "|a_k - a| > \epsilon_a \text{ frequently as } k \to \infty".$

7 (i)
$$\{a_k\}$$
 converges to a
Given any $\epsilon > 0$
 $\Rightarrow |a_k - a| < \frac{\epsilon}{2}$ ultimately as $k \to \infty$
 $\Rightarrow \exists m \in \mathbb{N}$ such that for all $k > m$, we have $|a_k - a| < \frac{\epsilon}{2}$
Similarly,
 $\exists m' \in \mathbb{N}$ such that for all $k > m'$, we have $|b_k - b| < \frac{\epsilon}{2}$
Let $M = \max\{m, m'\}$, then
 $|(a_k + b_k) - (a + b)| \leq |a_k - a| + |b_k - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$ $\forall k > M$
 $\Rightarrow |(a_k + b_k) - (a + b)| < \epsilon$ ultimately as $k \to \infty$
since ϵ is arbitrary,
 $\Rightarrow a_k + b_k \to a + b$
(ii) $\{a_k\}$ converges to a
Given any $\epsilon > 0$
 $\Rightarrow \exists m \in \mathbb{N}$ such that for all $k > m$, we have $|a_k - a| < \epsilon$
But then,
 $|(-a_k) - (-a)| - |a_k - a| < \epsilon \ \forall k > m$
 $\Rightarrow |(-a_k) - (-a)| < \epsilon$ ultimately as $k \to \infty$
 $\Rightarrow -a_k \to -a$
(iv) $\{a_k\}$ converges to a
Given any $\epsilon > 0$
 $\Rightarrow \exists m \in \mathbb{N}$ such that for all $k > m$, we have $|a_k - a| < \epsilon$
 $\Rightarrow \exists m_1$ such that for all $k > m$, we have $|a_k - a| < \epsilon$
 $\Rightarrow \exists m_1$ such that for all $k > m$, we have $|a_k - a| < \epsilon$
 $\Rightarrow \exists m_2$ such that for all $k > m_2$, we have $|a_k - a| \leq \frac{|a|^2}{2\epsilon}$
Let $m = \max\{m_1, m_2\}$,
then, $|\frac{1}{a_k} - \frac{1}{a}| = |\frac{a_k - a}{|a_k|} \leq \frac{2|a_k - a|}{|a|^2} < \epsilon \ \forall k > m$
(v) Suppose the contrary that $a > b$,
Let $\epsilon = \frac{a-b}{2}$
Since $a_k \to a$ and $b_k \to b$ as $k \to \infty$,
for some m we have $a_k > a - \epsilon$ and $b_k < b + \epsilon$ for all $k > m$,
which contradicts with $a_k \leqslant b_k$ frequently.
So $a \leqslant b$.
(8) $\{a_k\}$ diverges

 $\Rightarrow \{a_k\} \text{ does not converge.}$ By (i), $\{a_k\}$ is not bounded above (bounded below). $\Rightarrow \text{ for all } b \in \mathbb{R} \text{ and } N \in \mathbb{N} \quad \exists k > N \text{ such that } a_k > b \ (a_k < b).$ $\Rightarrow \text{for all } b \in \mathbb{R} \text{ one has that } a_k > b \ (a_k < b) \text{ ultimately as } k \to \infty \\ \Rightarrow \lim_{k \to \infty} a_k = \infty \quad (\lim_{k \to \infty} a_k = -\infty)$

(9) (a) If lim inf{a_k} = -∞ or lim inf{b_n} = -∞, then the inequality is automatically true.
So we are left to consider when both lim inf{a_k} > -∞ and lim inf{b_k} > -∞ is

 $\begin{aligned} \underline{a_k} &= \inf\{a_l : l \ge k\} \\ \underline{b_k} &= \inf\{b_l : l \ge k\} \\ \\ \underline{a_k + b_k} &= \inf\{a_l + b_l : l \ge k\} \\ \\ \\ Fix \ k, \\ \underline{a_k} &\leq a_l \ \forall l \ge k \\ \\ \underline{b_k} &\leq b_l \ \forall l \ge k \\ \\ \Rightarrow \underline{a_k} + \underline{b_k} &\leq a_l + b_l \ \forall l \ge k \\ \\ \Rightarrow \underline{a_k} + \underline{b_k} &\leq a_l + b_l \ \forall l \ge k \\ \\ \Rightarrow \underline{a_k} + \underline{b_k} &\leq a_l + b_k \ (since \ \underline{a_k + b_k} \ is the greatest lower bound of \ a_l + b_l.) \\ \\ \\ This is true for all \ k \in \mathbb{N} \end{aligned}$

We can apply Proposition 2.4(i) and get $\lim \underline{a_k} + \lim \underline{b_k} \leq \lim (\underline{a_k} + b_k)$ $\Rightarrow \lim \inf_{k \to \infty} a_k + \lim \inf_{k \to \infty} b_k \leq \lim \inf_{k \to \infty} a_k + b_k$

By the proof above, given any two sequences $\{a_k\}$ and $\{b_k\}$ we have for sequences $\{-a_k\}$ and $\{-b_k\}$, $\lim \underline{-a_k} + \lim \underline{-b_k} \leq \lim (-a_k) + (-b_k) = \lim -(a_k + b_k)$

We can observe that $\underline{-a_k} = -\overline{a_k}$

true.

 $\Rightarrow \lim(-\overline{a_k}) + \lim(-\overline{b_k}) \leqslant \lim(-\overline{a_k + b_k})$

 $\Rightarrow \limsup_{k \to \infty} a_k + \limsup_{k \to \infty} b_k \geqslant \limsup_{k \to \infty} (a_k + b_k)$

(b) Since $a_k \leq b_k$ ultimately, $\exists N \in \mathbb{N}$ such that $a_k \leq b_k \quad \forall k > N$ Since $\underline{a_k} \leq a_k \quad \forall k$ $\Rightarrow \underline{a_k} \leq b_k \quad \forall k > N$ $\Rightarrow \underline{a_k} \leq \underline{b_k} \quad \forall k > N$ (Since $\underline{b_k}$ is the greatest lower bound for $b_l, \ l > k$) Taking the limit on both sides, we get $\lim \underline{a_k} \leq \lim \underline{b_k} \Rightarrow \lim \inf_{k \to \infty} a_k \leq \lim \inf_{k \to \infty} b_k$

Similarly, we can prove $\limsup_{k\to\infty} a_k \leq \limsup_{k\to\infty} b_k$.

(10) From $n_1 < n_2 < \cdots < n_k$ we can observe that $k \leq n_k$ $\therefore \{a_l | l \geq k\} \supset \{a_l | l \geq n_k\}$ $\underline{a_k} \leq \underline{a_{n_k}}$ taking the limit on both sides, we have $\lim \underline{a_k} \leqslant \lim \underline{a_{n_k}} \Rightarrow \liminf_{k \to \infty} a_k \leqslant \liminf_{k \to \infty} a_{n_k}$

To prove $\limsup_{k\to\infty} a_{n_k} \leq \limsup_{k\to\infty} a_k$, we substitute the sequences $\{-a_k\}$ and $\{-a_{n_k}\}$ into the previous inequality obtained.

- (11) For a bounded sequence $\{a_k\}$, we have $\limsup_{k\to\infty} a_k < \infty$. By the second part of Proposition 2.8, there exists a subsequence $\{a_{n_k}\}$ such that $\lim_{k\to\infty} a_{n_k} = \limsup_{k\to\infty} a_k < \infty$ Then $\{a_{n_k}\}$ is a convergent subsequence. We have proved that a convergent subsequence always exists.
- (12) Let $s_n = \sum_{k=0}^n a_k$. $\sum_{k=0}^{\infty}$ converges implies that $\lim_{n\to\infty} s_n = s$ for some $s \in \mathbb{R}$. $\Rightarrow \lim_{n\to\infty} a_n = \lim_{n\to\infty} (s_n - s_{n-1}) = \lim_{n\to\infty} s_n - \lim_{n\to\infty} s_{n-1} = s - s = 0$
- (13) (a) There does not exist an example except for the case where $b_k = 0$ ultimately as $k \to \infty$ If we don't have $b_k = 0$ ultimately then $a_k \leq M b_k$ ultimately implies $\frac{a_k}{b_k} \leq M$ ultimately. $\Rightarrow \limsup_{k\to\infty} \frac{a_k}{b_k} = M < \infty$ So if direct comparison test applies, limit comparison test also applies.
 - (b) Let $a_k = \frac{1}{k^2}$ and let $b_k = \frac{1}{(k-1)^2}$ $\limsup_{k\to\infty} \frac{a_k}{b_k} = \lim_{k\to\infty} (\frac{k-1}{k})^2 = 1 < \infty$ but $\frac{a_{k+1}}{a_k} = (\frac{k}{k+1})^2 > (\frac{k-1}{k})^2 = \frac{b_{k+1}}{b_k} \quad \forall k$ So here, the limit comparison test applies, but the ratio comparison test fails.
- (14) Let $a_k = 1$, then $\limsup \sqrt[k]{a_k} = 1$ $\sum_{k=0}^{\infty} a_k$ diverges.

Let $b_k = \frac{1}{k^2}$, then $\limsup \sqrt[k]{b_k} = 1$ $\sum_{k=0}^{\infty} b_k$ converges.

(15) proven in class

(16) Let
$$\liminf_{k\to\infty} \frac{a_{k+1}}{a_k} = r$$

Pick any $\rho < r$,
 $\exists N \in \mathbb{N}$ such that $\rho < \frac{a_{k+1}}{a_k} \quad \forall k > N$
 $\Rightarrow a_{k+1} \ge \rho a_k \quad \forall k > N$
 $\Rightarrow a_k \ge \rho^{k-N} a_N \quad \forall k > N$
 $\Rightarrow \sqrt[k]{a_k} \ge \sqrt[k]{\rho^{k-N} a_N} = \sqrt[k]{\rho^k} \sqrt[k]{\frac{a_N}{\rho^N}} = \rho \sqrt[k]{c}$, where c is a constant.
 $\liminf_{k\to\infty} \sqrt[k]{a_k} \ge \rho \sqrt[k]{c} = \rho$
Since ρ can be taken arbitrary close to r
 $\liminf_{k\to\infty} \sqrt[k]{a_k} \ge r = \liminf_{k\to\infty} \frac{a_{k+1}}{a_k}$
we have proven the left inequality.
The right inequality is proven the same way.