## HW 3

(1) Proposition 2.12

By the definition of a Cauchy sequence, we know that
for any $\epsilon>0$, there exists $N_{\epsilon}$ such that
$k, l \geqslant N_{\epsilon} \Rightarrow\left|a_{k}-a_{l}\right|<\epsilon$.

Let $\epsilon=1$. Then there is an $N$ such that
$k \geqslant N \Rightarrow\left|a_{N}-a_{k}\right|<1$,
which means $\left|a_{k}\right|<\left|a_{N}\right|+1$ for all $k>N$.
Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{N-1}\right|,\left|a_{N}\right|+1\right\}$
then it is clear that $\left|a_{k}\right| \leqslant M$ for all $k \in \mathbb{N}$
$\Rightarrow\left\{a_{k}\right\}$ is bounded.
(2) Proposition 3.6 (Cauchy $2^{k}$ test)
$a_{k}$ is nonincreasing, so for $k \leqslant 2^{j} \Rightarrow a_{k} \geqslant a_{2^{j}}$
for $k \geqslant 2^{j-1} \Rightarrow a_{k} \leqslant a_{2^{j-1}}$
therefore we have
$a_{2^{j}} \leqslant a_{k} \leqslant a_{2^{j-1}}$ for $2^{j-1} \leqslant k<2^{j}$
let $b_{k}=2 a_{2^{j}}$ for $2^{j-1} \leqslant k<2^{j}, j \in \mathbb{N}$
$\sum_{k=1}^{\infty} b_{k}=\sum_{j=1}^{\infty} \sum_{k=2^{j-1}}^{2^{j}} b_{k}=2 \cdot \sum_{j=1}^{\infty} 2^{j-1} a_{2^{j}}=\sum_{j=1}^{\infty} 2^{j} a_{2 j}$
Since $b_{k}=2 a_{2^{j}} \leqslant 2 a_{k}$
By direct comparison,
$\sum_{k=1}^{\infty} b_{k}$ converges if $\sum_{k=1}^{\infty} a_{k}$ converges
So $\sum_{j=1}^{\infty} 2^{j} a_{2^{j}}$ converges if $\sum_{k=1}^{\infty} a_{k}$ converges.
For the second half, we do similar arguments.
Let $c_{k}=a_{2^{j-1}}$ for $2^{j-1} \leqslant k<2^{j}, j \in \mathbb{N}$
then $\sum_{k=1}^{\infty} c_{k}=\sum_{j=1}^{\infty} \sum_{k=2^{j-1}}^{2^{j}} c_{k}=\sum_{j=1}^{\infty} \sum_{k=2^{j-1}}^{2^{j}} a_{2^{j-1}}=\sum_{j=1}^{\infty} 2^{j-1} a_{2^{j-1}}=\sum_{j=0}^{\infty} 2^{j} a_{2^{j}}$
Since $a_{k} \leqslant a_{2^{j-1}}=c_{k}$ for $2^{j-1} \leqslant k \leqslant 2^{j}$ and all $j \in \mathbb{N}$,
$\sum_{k=1}^{\infty} a_{k}$ converges if $\sum_{k=1}^{\infty} c_{k}$ converges.
$\sum_{k=1}^{\infty} 2^{j} a_{2 j}$ converges if $\sum_{k=1}^{\infty} c_{k}$ converges.
(3) $\bar{s}=\lim _{k \rightarrow \infty} S_{2 k}$
$\underline{s}=\lim _{k \rightarrow \infty} S_{2 k+1}$
we want to show that if $\bar{s}=\underline{s}$, then $\lim _{k \rightarrow \infty} S_{k}=\bar{s}=\underline{s}$

With $\bar{s}=\lim _{k \rightarrow \infty} S_{2 k}$ and $\underline{s}=\lim _{k \rightarrow \infty} S_{2 k+1}$, we get
given any $\epsilon>0$
$\exists N_{1}$ such that $\left|S_{2 k}-\bar{s}\right|<\epsilon \quad \forall k>N_{1}$
$\exists N_{2}$ such that $\left|S_{2 k+1}-\underline{s}\right|<\epsilon \quad \forall k>N_{2}$,
then $\left|S_{k}-\underline{s}\right|=\left|S_{k}-\bar{s}\right|<\epsilon \quad \forall k>\max \left\{2 N_{2}+1,2 N_{1}\right\}$
Since $\epsilon>0$ is arbitrary,
$\lim _{k \rightarrow \infty} S_{k}=\bar{s}=\underline{s}$.
(4) There are many ways to determine convergence for every problem. The answers here are just for reference.
(a) We can use the ratio test for positive series here
$\lim \sup _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim \sup _{k \rightarrow \infty} \frac{a^{k+1}}{(k+1)^{p}} \cdot \frac{k^{p}}{a^{k}}=\lim \sup _{k \rightarrow \infty}\left(\frac{k}{k+1}\right)^{p} a$
for $a>1$, $\lim \sup _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}>1 \Rightarrow \sum_{k=1}^{\infty} \frac{a^{k}}{k^{p}}$ diverges.
for $a<1, \lim _{\sup _{k \rightarrow \infty}} \frac{a_{k+1}}{a_{k}}<1 \Rightarrow \sum_{k=1}^{\infty} \frac{a^{k}}{k^{p}}$ converges.
for $a=1$, the series becomes $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$, which converges when $p>1$, and diverges when $p \leqslant 1$.
(b) We can apply direct comparison test with the series $\sum_{k=1}^{\infty} \frac{1}{5 k}$

Since $\frac{1}{5 k} \leqslant \frac{1}{2 k+3}$ for all $k \geqslant 1$,
and since $\sum_{k=1}^{\infty} \frac{1}{5 k}$ diverges (it is a multiple of the harmonic series),
$\sum_{k=1}^{\infty} \frac{1}{2 k+3}$ diverges.
(c) Since $\lim _{k \rightarrow \infty} \frac{1}{k}=0$

By Proposition 3.9 for alternating series, $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$ converges.
(d) Since $\frac{1}{k(k+1)} \leqslant \frac{1}{k^{2}}$ for all $k \geqslant 1$, and $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ converges,
by direct comparison test we have that $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges.
(e) We can use the ratio test here.
$\limsup _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim \sup _{k \rightarrow \infty} \frac{k+1}{k} \cdot \frac{e^{-\left(k^{2}+2 k+1\right)}}{e^{-k^{2}}}=\lim \sup _{k \rightarrow \infty} \frac{k+1}{k} e^{-(2 k+1)}=0<1$
Thus, the series converges.
(f) Since $\left(\frac{k+1}{k^{2}+1}\right)^{3} \leqslant\left(\frac{2 k}{k^{2}}\right)^{3}=\frac{8}{k^{3}}$ for all $k \geqslant 1$,
and $\sum_{k=1}^{\infty} \frac{8}{k^{3}}$ converges.
Using the direct comparison test,
$\sum_{k=1}^{\infty}\left(\frac{k+1}{k^{2}+1}\right)^{3}$ converges.
(g) $\lim _{k \rightarrow \infty} k \sin \left(\frac{1}{k}\right)=1$

From Proposition 3.1, $\sum_{k=0}^{\infty} k \sin \left(\frac{1}{k}\right)$ cannot converge.
(5) $\lim \sup _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim \sup _{k \rightarrow \infty}\left(\frac{k+1}{k}\right)^{\alpha} \frac{e^{k}}{e^{k+1}}=\frac{1}{e}<1$

From the ratio test, we know that the series converges.
(6) By the integral test
$\sum_{k=1}^{\infty} \frac{1}{(k+1)[\ln (k+1)]^{\alpha}}$ converges if and only if $\int_{1}^{\infty} \frac{1}{(x+1)[\ln (x+1)]^{\alpha}} d x$ converges.
for $\alpha=1, \int_{1}^{\infty} \frac{1}{(x+1)[\ln (x+1)]^{\alpha}} d x=\left.\ln (\ln (x+1))\right|_{x=1} ^{\infty}=\infty$
for $\alpha \neq 1, \int_{1}^{\infty} \frac{1}{(x+1)[\ln (x+1)]^{\alpha}} d x=\left.\frac{[\ln (x+1)]^{1-\alpha}}{1-\alpha}\right|_{x=1} ^{\infty}$
when $\alpha<1$ the integral diverges, and when $\alpha>1$ the integral converges.
The series converges if and only if $\alpha>1$.

