HW 3

(1) Proposition 2.12 By the definition of a Cauchy sequence, we know that for any $\epsilon > 0$, there exists N_{ϵ} such that $k, l \ge N_{\epsilon} \Rightarrow |a_k - a_l| < \epsilon$.

Let $\epsilon = 1$. Then there is an N such that $k \ge N \Rightarrow |a_N - a_k| < 1$, which means $|a_k| < |a_N| + 1$ for all k > N. Let $M = \max\{|a_1|, |a_2|, \cdots, |a_{N-1}|, |a_N| + 1\}$ then it is clear that $|a_k| \le M$ for all $k \in \mathbb{N}$ $\Rightarrow \{a_k\}$ is bounded.

(2) Proposition 3.6 (Cauchy 2^k test) a_k is nonincreasing, so for $k \leq 2^j \Rightarrow a_k \geq a_{2^j}$ for $k \geq 2^{j-1} \Rightarrow a_k \leq a_{2^{j-1}}$ therefore we have $a_{2^j} \leq a_k \leq a_{2^{j-1}}$ for $2^{j-1} \leq k < 2^j$

let $b_k = 2a_{2^j}$ for $2^{j-1} \leq k < 2^j$, $j \in \mathbb{N}$ $\sum_{k=1}^{\infty} b_k = \sum_{j=1}^{\infty} \sum_{k=2^{j-1}}^{2^j} b_k = 2 \cdot \sum_{j=1}^{\infty} 2^{j-1} a_{2^j} = \sum_{j=1}^{\infty} 2^j a_{2^j}$ Since $b_k = 2a_{2^j} \leq 2a_k$ By direct comparison, $\sum_{k=1}^{\infty} b_k \text{converges if } \sum_{k=1}^{\infty} a_k \text{converges}$ So $\sum_{j=1}^{\infty} 2^j a_{2^j}$ converges if $\sum_{k=1}^{\infty} a_k$ converges.

For the second half, we do similar arguments. Let $c_k = a_{2^{j-1}}$ for $2^{j-1} \leq k < 2^j$, $j \in \mathbb{N}$ then $\sum_{k=1}^{\infty} c_k = \sum_{j=1}^{\infty} \sum_{k=2^{j-1}}^{2^j} c_k = \sum_{j=1}^{\infty} \sum_{k=2^{j-1}}^{2^j} a_{2^{j-1}} = \sum_{j=1}^{\infty} 2^{j-1} a_{2^{j-1}} = \sum_{j=0}^{\infty} 2^j a_{2^j}$ Since $a_k \leq a_{2^{j-1}} = c_k$ for $2^{j-1} \leq k \leq 2^j$ and all $j \in \mathbb{N}$, $\sum_{k=1}^{\infty} a_k$ converges if $\sum_{k=1}^{\infty} c_k$ converges. $\sum_{k=1}^{\infty} 2^j a_{2^j}$ converges if $\sum_{k=1}^{\infty} c_k$ converges.

(3) $\overline{s} = \lim_{k \to \infty} S_{2k}$ $\underline{s} = \lim_{k \to \infty} S_{2k+1}$ we want to show that if $\overline{s} = \underline{s}$, then $\lim_{k \to \infty} S_k = \overline{s} = \underline{s}$

With $\overline{s} = \lim_{k \to \infty} S_{2k}$ and $\underline{s} = \lim_{k \to \infty} S_{2k+1}$, we get given any $\epsilon > 0$ $\exists N_1$ such that $|S_{2k} - \overline{s}| < \epsilon \quad \forall k > N_1$ $\exists N_2$ such that $|S_{2k+1} - \underline{s}| < \epsilon \quad \forall k > N_2$, then $|S_k - \underline{s}| = |S_k - \overline{s}| < \epsilon \quad \forall k > \max\{2N_2 + 1, 2N_1\}$ Since $\epsilon > 0$ is arbitrary, $\lim_{k \to \infty} S_k = \overline{s} = \underline{s}$.

(4) There are many ways to determine convergence for every problem. The answers here are just for reference.

- (a) We can use the ratio test for positive series here $\lim \sup_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim \sup_{k \to \infty} \frac{a^{k+1}}{(k+1)^p} \cdot \frac{k^p}{a^k} = \lim \sup_{k \to \infty} \left(\frac{k}{k+1}\right)^p a$ for a > 1, $\limsup_{k \to \infty} \frac{a_{k+1}}{a_k} > 1 \implies \sum_{k=1}^{\infty} \frac{a^k}{k^p}$ diverges. for a < 1, $\limsup_{k \to \infty} \frac{a_{k+1}}{a_k} < 1 \implies \sum_{k=1}^{\infty} \frac{a^k}{k^p}$ converges. for a = 1, the series becomes $\sum_{k=1}^{\infty} \frac{1}{k^p}$, which converges when p > 1, and diverges when $p \leq 1$.
- (b) We can apply direct comparison test with the series $\sum_{k=1}^{\infty} \frac{1}{5k}$ Since $\frac{1}{5k} \leq \frac{1}{2k+3}$ for all $k \geq 1$, and since $\sum_{k=1}^{\infty} \frac{1}{5k}$ diverges (it is a multiple of the harmonic series), $\sum_{k=1}^{\infty} \frac{1}{2k+3}$ diverges.
- (c) Since $\lim_{k\to\infty} \frac{1}{k} = 0$ By Proposition 3.9 for alternating series, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges.
- (d) Since $\frac{1}{k(k+1)} \leq \frac{1}{k^2}$ for all $k \geq 1$, and $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, by direct comparison test we have that $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ converges.
- (e) We can use the ratio test here. $\limsup_{k\to\infty} \frac{a_{k+1}}{a_k} = \limsup_{k\to\infty} \frac{k+1}{k} \cdot \frac{e^{-(k^2+2k+1)}}{e^{-k^2}} = \limsup_{k\to\infty} \frac{k+1}{k} e^{-(2k+1)} = 0 < 1$ Thus, the series converges.
- (f) Since $\left(\frac{k+1}{k^2+1}\right)^3 \leqslant \left(\frac{2k}{k^2}\right)^3 = \frac{8}{k^3}$ for all $k \ge 1$, and $\sum_{k=1}^{\infty} \frac{8}{k^3}$ converges. Using the direct comparison test, $\sum_{k=1}^{\infty} \left(\frac{k+1}{k^2+1}\right)^3$ converges.
- (g) $\lim_{k\to\infty} k \sin\left(\frac{1}{k}\right) = 1$ From Proposition 3.1, $\sum_{k=0}^{\infty} k \sin\left(\frac{1}{k}\right)$ cannot converge.
- (5) $\limsup_{k\to\infty} \frac{a_{k+1}}{a_k} = \limsup_{k\to\infty} \left(\frac{k+1}{k}\right)^{\alpha} \frac{e^k}{e^{k+1}} = \frac{1}{e} < 1$ From the ratio test, we know that the series converges.
- (6) By the integral test

 $\sum_{k=1}^{\infty} \frac{1}{(k+1)[\ln(k+1)]^{\alpha}} \text{ converges if and only if } \int_{1}^{\infty} \frac{1}{(x+1)[\ln(x+1)]^{\alpha}} dx \text{ converges.}$ for $\alpha = 1$, $\int_{1}^{\infty} \frac{1}{(x+1)[\ln(x+1)]^{\alpha}} dx = \ln(\ln(x+1))\Big|_{x=1}^{\infty} = \infty$ for $\alpha \neq 1$, $\int_{1}^{\infty} \frac{1}{(x+1)[\ln(x+1)]^{\alpha}} dx = \frac{[\ln(x+1)]^{1-\alpha}}{1-\alpha}\Big|_{x=1}^{\infty}$ when $\alpha < 1$ the integral diverges, and when $\alpha > 1$ the integral converges. The series converges if and only if $\alpha > 1$.