HW 5

(1)(i) if $a \in A^c$ \exists a sequence $\{a_k\}$ such that $a_k \in A \quad \forall k \in \mathbb{N}$, and $\lim_{k \to \infty} a_k = a$ since $A \subset B$, we have $a_k \in B \quad \forall k \in \mathbb{N}$ $\therefore a \in B^c$ $\Rightarrow A^c \subset B^c$ (ii) first we prove $(A \cup B)^c \subset A^c \cup B^c$ let $x \in (A \cup B)^c$, \exists a sequence $\{x_k\}$ such that $x_k \in A \cup B \quad \forall k \in \mathbb{N}$, and $\lim_{k \to \infty} x_k = x$ $x_k \in A \cup B$, so $x_k \in A$ or $x_k \in B$ if $x_k \in A$, then relabel it x'_k , if not, then $x_k \in B$, relabel it x''_k we have $\{x'_k\} \cup \{x''_k\} = \{x_k\}$ and $\{x'_k\} \cap \{x''_k\} = \emptyset$, Since $\{x_k\}$ is infinite, one of $\{x'_k\}$ and $\{x''_k\}$ has to be an infinite subsequence of $\{x_k\}.$ Suppose $\{x'_k\}$ is the infinite subsequence, then by $\{x'_k\} \subset A \text{ and } \lim_{k \to \infty} x'_k = \lim_{k \to \infty} x_k = x,$ we get $x \in A^c$. Otherwise $\{x_k''\}$ would be the infinite subsequence, and by the same arguments, we get $x \in B^c$ Thus, we have proved that if $x \in (A \cup B)^c$ then $x \in A^c$ otherwise B^c $\Rightarrow (A \cup B)^c \subset A^c \cup B^c.$ Now we prove the other direction, $A^c \cup B^c \subset (A \cup B)^c$ by (i), $A \subset A \cup B \Rightarrow A^c \subset (A \cup B)^c$ $B \subset A \cup B \Rightarrow B^c \subset (A \cup B)^c$ $\Rightarrow (A^c \cup B^c) \subset (A \cup B)^c$ $\Rightarrow (A^c \cup B^c) = (A \cup B)^c$ (iii) by (i) $(A \cap B) \subset A \Rightarrow (A \cap B)^c \subset A^c$ $(A \cap B) \subset B \Rightarrow (A \cap B)^c \subset B^c$ $\Rightarrow (A \cap B)^c \subset A^c \cap B^c$ (2) Since $a_k \in I_k \Rightarrow a - \frac{1}{2^k} < a_k < a + \frac{1}{2^k} \Rightarrow |a - a_k| < \frac{1}{2^k}$ $\forall \epsilon, \exists N \text{ such that } 2^k > \frac{1}{\epsilon} \quad \forall k > N,$ then $|a - a_k| < \frac{1}{2^k} < \epsilon^{-\epsilon} \forall k > N$ $\lim_{k \to \infty} a_k = a$ (3) $a_i = b_{(i,j_i)}$ then $|a_i - a| = |b_{(i,j_i)} - a| \le |b_{(i,j_i)} - b_i| + |b_i - a| < 2|b_i - a|$ Since $b_i \to a$ given $\epsilon > 0$ $\exists N_{\epsilon}$ such that $|b_i - a| < \frac{\epsilon}{2}$ for $i > N_{\epsilon}$ then for the same N_{ϵ} , $|a_i - a| < \epsilon$ for all $i > N_{\epsilon}$ $\Rightarrow \lim_{i \to \infty} a_i = a$

(4) A, B are closed, so $A = A^c$, $B = B^c$

- (i) By problem 1 and the fact that A, B are closed, $(A \cap B)^c \subset A^c \cap B^c \subset A \cap B$ Since $(A \cap B)^c \supset A \cap B$ $(A \cap B)^c = (A \cap B)$ $A \cap B$ is closed.
- (ii) Again from problem 1, $(A \cup B)^c = A^c \cup B^c = A \cup B \Rightarrow A \cup B$ is closed.
- (iii) from (ii), we get inductively that finite intersection of closed sets is closed; $(\bigcap_{k=1}^{N} A_k)^c = (\bigcap_{k=1}^{N} A_k)$ for all A_k closed

for any $N \in \mathbb{N}$ $\bigcap_{k=1}^{\infty} A_k \subset \bigcap_{k=1}^{N} A_k$ $\therefore (\bigcap_{k=1}^{\infty} A_k)^c \subset (\bigcap_{k=1}^{N} A_k)^c = \bigcap_{k=1}^{N} A_k \subset A_i \quad \forall i \leq \mathbb{N}$ Since N can be arbitrarily chosen $(\bigcap_{k=1}^{\infty} A_k)^c \subset A_i \text{ for all } i \in \mathbb{N}$ $\Rightarrow (\bigcap_{k=1}^{\infty} A_k)^c \subset \bigcap_{k=1}^{\infty} A_k$

- (5) A is dense in $D \Rightarrow D \subset A^c$ since $A \subset B \Rightarrow A^c \subset B^c$ $\Rightarrow C \subset D \subset A^c \subset B^c$ $\Rightarrow B$ is dense in C.
- (6) A is unbounded, suppose it is unbounded above \Rightarrow for every $N \in \mathbb{N}$, there exists $x \in A$ such that x > NWe can construct a sequence such that $x_1 > 1$, $x_k > x_{k-1} \quad \forall k > 1$ $\{x_k\}$ is an increasing divergent sequence.

If A is unbounded below, we can find a decreasing divergent sequence analogously. Since $\{x_k\}$ is a monotone divergent sequence, all of its subsequences are monotone and divergent.

A is not sequentially compact.

$$f(x) = \begin{cases} \frac{1}{q} & \text{ for } x = \frac{p}{q} \text{ rational (p,q in simplest form)} \\ 0 & \text{ for } x \text{ irrational} \end{cases}$$

Given $x \in \mathbb{R} \setminus \mathbb{Q}$, and $\epsilon > 0$ $\exists k \in \mathbb{N}$, such that $k > \frac{1}{\epsilon}$ for rational $\frac{p}{q} \in (x - \frac{1}{2k}, x + \frac{1}{2k})$, and $|\frac{1}{q}| > \frac{1}{k}$, we have $\cdots < \frac{p-2}{q} < \frac{p-1}{q} < x - \frac{1}{2k} < \frac{p}{q} < x + \frac{1}{2k} < \frac{p+1}{q} < \frac{p+2}{q} \cdots$ in other words, if |q| < k, there is only one possible p such that $\frac{p}{q}$ lies in the interval $(x - \frac{1}{2k}, x + \frac{1}{2k})$ therefore, there are only a finite number of rational number $\frac{p}{q}$ in $(x - \frac{1}{2k}, x + \frac{1}{2k})$ such that $|\frac{1}{q}| > \frac{1}{k}$, let δ be the minimum of the distances of these $\frac{p}{q}$ from x. then there does not exist any rational number $\frac{p}{q}$ such that $|\frac{1}{q}| > \frac{1}{k}$ in $(x - \delta, x + \delta)$ \Rightarrow for all rational $\frac{p}{q}$ in $(x - \delta, x + \delta)$, we have $f(\frac{p}{q}) = \frac{1}{q} < \frac{1}{k} < \epsilon$ Since for irrational $y \in (x - \delta, x + \delta)$, we have $f(y) < \epsilon$ δ can be chosen for any given ϵ $\Rightarrow f$ is continuous at x irrational.