HW 5

(1) (i) if $a \in A^{c}$
\exists a sequence $\left\{a_{k}\right\}$ such that $a_{k} \in A \quad \forall k \in \mathbb{N}$, and $\lim _{k \rightarrow \infty} a_{k}=a$
since $A \subset B$, we have $a_{k} \in B \quad \forall k \in \mathbb{N}$
$\therefore a \in B^{c}$
$\Rightarrow A^{c} \subset B^{c}$
(ii) first we prove $(A \cup B)^{c} \subset A^{c} \cup B^{c}$
let $x \in(A \cup B)^{c}$,
\exists a sequence $\left\{x_{k}\right\}$ such that $x_{k} \in A \cup B \quad \forall k \in \mathbb{N}$, and $\lim _{k \rightarrow \infty} x_{k}=x$
$x_{k} \in A \cup B$, so $x_{k} \in A$ or $x_{k} \in B$
if $x_{k} \in A$, then relabel it x_{k}^{\prime}, if not, then $x_{k} \in B$, relabel it $x_{k}^{\prime \prime}$
we have $\left\{x_{k}^{\prime}\right\} \cup\left\{x_{k}^{\prime \prime}\right\}=\left\{x_{k}\right\}$ and $\left\{x_{k}^{\prime}\right\} \cap\left\{x_{k}^{\prime \prime}\right\}=\varnothing$,
Since $\left\{x_{k}\right\}$ is infinite, one of $\left\{x_{k}^{\prime}\right\}$ and $\left\{x_{k}^{\prime \prime}\right\}$ has to be an infinite subsequence of $\left\{x_{k}\right\}$.
Suppose $\left\{x_{k}^{\prime}\right\}$ is the infinite subsequence, then by
$\left\{x_{k}^{\prime}\right\} \subset A$ and $\lim _{k \rightarrow \infty} x_{k}^{\prime}=\lim _{k \rightarrow \infty} x_{k}=x$,
we get $x \in A^{c}$.
Otherwise $\left\{x_{k}^{\prime \prime}\right\}$ would be the infinite subsequence,
and by the same arguments, we get $x \in B^{c}$
Thus, we have proved that if $x \in(A \cup B)^{c}$ then $x \in A^{c}$ otherwise B^{c}
$\Rightarrow(A \cup B)^{c} \subset A^{c} \cup B^{c}$.
Now we prove the other direction, $A^{c} \cup B^{c} \subset(A \cup B)^{c}$
by (i),
$A \subset A \cup B \Rightarrow A^{c} \subset(A \cup B)^{c}$
$B \subset A \cup B \Rightarrow B^{c} \subset(A \cup B)^{c}$
$\Rightarrow\left(A^{c} \cup B^{c}\right) \subset(A \cup B)^{c}$
$\Rightarrow\left(A^{c} \cup B^{c}\right)=(A \cup B)^{c}$
(iii) by (i)

$$
\begin{aligned}
& (A \cap B) \subset A \Rightarrow(A \cap B)^{c} \subset A^{c} \\
& (A \cap B) \subset B \Rightarrow(A \cap B)^{c} \subset B^{c} \\
& \Rightarrow(A \cap B)^{c} \subset A^{c} \cap B^{c}
\end{aligned}
$$

(2) Since $a_{k} \in I_{k} \Rightarrow a-\frac{1}{2^{k}}<a_{k}<a+\frac{1}{2^{k}} \Rightarrow\left|a-a_{k}\right|<\frac{1}{2^{k}}$
$\forall \epsilon, \exists N$ such that $2^{k}>\frac{1}{\epsilon} \quad \forall k>N$,
then $\left|a-a_{k}\right|<\frac{1}{2^{k}}<\epsilon \quad \forall k>N$
$\lim _{k \rightarrow \infty} a_{k}=a$
(3) $a_{i}=b_{\left(i, j_{i}\right)}$
then $\left|a_{i}-a\right|=\left|b_{\left(i, j_{i}\right)}-a\right| \leqslant\left|b_{\left(i, j_{i}\right)}-b_{i}\right|+\left|b_{i}-a\right|<2\left|b_{i}-a\right|$
Since $b_{i} \rightarrow a$
given $\epsilon>0$
$\exists N_{\epsilon}$ such that $\left|b_{i}-a\right|<\frac{\epsilon}{2}$ for $i>N_{\epsilon}$
then for the same $N_{\epsilon},\left|a_{i}-a\right|<\epsilon$ for all $i>N_{\epsilon}$
$\Rightarrow \lim _{i \rightarrow \infty} a_{i}=a$
(4) A, B are closed, so $A=A^{c}, B=B^{c}$
(i) By problem 1 and the fact that A, B are closed,
$(A \cap B)^{c} \subset A^{c} \cap B^{c} \subset A \cap B$
Since $(A \cap B)^{c} \supset A \cap B$
$(A \cap B)^{c}=(A \cap B)$
$A \cap B$ is closed.
(ii) Again from problem 1,
$(A \cup B)^{c}=A^{c} \cup B^{c}=A \cup B \Rightarrow A \cup B$ is closed.
(iii) from (ii), we get inductively that finite intersection of closed sets is closed; $\left(\bigcap_{k=1}^{N} A_{k}\right)^{c}=\left(\bigcap_{k=1}^{N} A_{k}\right)$ for all A_{k} closed
for any $N \in \mathbb{N}$
$\bigcap_{k=1}^{\infty} A_{k} \subset \bigcap_{k=1}^{N} A_{k}$
$\therefore\left(\bigcap_{k=1}^{\infty} A_{k}\right)^{c} \subset\left(\bigcap_{k=1}^{N} A_{k}\right)^{c}=\bigcap_{k=1}^{N} A_{k} \subset A_{i} \quad \forall i \leqslant \mathbb{N}$
Since N can be arbitrarily chosen
$\left(\bigcap_{k=1}^{\infty} A_{k}\right)^{c} \subset A_{i}$ for all $i \in \mathbb{N}$
$\Rightarrow\left(\bigcap_{k=1}^{\infty} A_{k}\right)^{c} \subset \bigcap_{k=1}^{\infty} A_{k}$
(5) A is dense in $D \Rightarrow D \subset A^{c}$
since $A \subset B \Rightarrow A^{c} \subset B^{c}$
$\Rightarrow C \subset D \subset A^{c} \subset B^{c}$
$\Rightarrow B$ is dense in C.
(6) A is unbounded, suppose it is unbounded above
\Rightarrow for every $N \in \mathbb{N}$, there exists $x \in A$ such that $x>N$
We can construct a sequence such that $x_{1}>1, x_{k}>x_{k-1} \quad \forall k>1$
$\left\{x_{k}\right\}$ is an increasing divergent sequence.
If A is unbounded below, we can find a decreasing divergent sequence analogously.
Since $\left\{x_{k}\right\}$ is a monotone divergent sequence, all of its subsequences are monotone and divergent.
A is not sequentially compact.

$$
f(x)=\left\{\begin{array}{cccc}
\frac{1}{q} & \text { for } & x=\frac{p}{q} & \text { rational } \quad(\mathrm{p}, \mathrm{q} \text { in simplest form) } \tag{7}\\
0 & \text { for } & x & \text { irrational }
\end{array}\right.
$$

Given $x \in \mathbb{R} \backslash \mathbb{Q}$, and $\epsilon>0$
$\exists k \in \mathbb{N}$, such that $k>\frac{1}{\epsilon}$
for rational $\frac{p}{q} \in\left(x-\frac{1}{2 k}, x+\frac{1}{2 k}\right)$, and $\left|\frac{1}{q}\right|>\frac{1}{k}$,
we have $\cdots<\frac{p-2}{q}<\frac{p-1}{q}<x-\frac{1}{2 k}<\frac{p}{q}<x+\frac{1}{2 k}<\frac{p+1}{q}<\frac{p+2}{q} \cdots$
in other words, if $|q|<k$, there is only one possible p such that $\frac{p}{q}$ lies in the interval $\left(x-\frac{1}{2 k}, x+\frac{1}{2 k}\right)$
therefore, there are only a finite number of rational number $\frac{p}{q}$ in $\left(x-\frac{1}{2 k}, x+\frac{1}{2 k}\right)$ such that $\left|\frac{1}{q}\right|>\frac{1}{k}$,
let δ be the minimum of the distances of these $\frac{p}{q}$ from x.
then there does not exist any rational number $\frac{p}{q}$ such that $\left|\frac{1}{q}\right|>\frac{1}{k}$ in $(x-\delta, x+\delta)$
\Rightarrow for all rational $\frac{p}{q}$ in $(x-\delta, x+\delta)$, we have $f\left(\frac{p}{q}\right)=\frac{1}{q}<\frac{1}{k}<\epsilon$
Since for irrational $y \in(x-\delta, x+\delta), f(y)=0$
for all $y \in(x-\delta, x+\delta)$, we have $f(y)<\epsilon$
δ can be chosen for any given ϵ
$\Rightarrow f$ is continuous at x irrational.

