HW 6

1. 3.1 problem 1

(a) False Let

$$f(x) = \begin{cases} 0 & \text{for } x > 0\\ 1 & \text{for } x \leqslant 0 \end{cases}$$
$$g(x) = \begin{cases} 1 & \text{for } x > 0\\ 0 & \text{for } x \leqslant 0 \end{cases}$$

Here, f(x) and g(x) are not continuous functions, but (f+g)(x) = 1 is a continuous function.

(b) False Let

$$f(x) = \begin{cases} 1 & \text{for } x > 0\\ -1 & \text{for } x \leq 0 \end{cases}$$

Here, $f^2(x) = 1$ is a continuous function, but f(x) is not a continuous function.

(c) True

Since g is continuous -g is continuous. Since the sum of continuous functions is continuous, we have f = (f + g) + (-g) is continuous.

(d) True

Given any convergent sequence $\{x_k\}$ in \mathbb{N} converging to $x \in \mathbb{N}$, we have $x_k = x$ ultimately. So, $f(x_k) = f(x)$ ultimately. Hence, every function $f : \mathbb{N} \to \mathbb{R}$ is continuous.

 $2. \ 3.1 \text{ problem } 3$

f(x) is continuous in $\mathbb{R}\setminus\{0\}$.

For any fixed x > 0 and given ϵ , we know $x^2 - y^2 = (x+y)(x-y)$. By letting $\delta = \min\{\frac{\epsilon}{2|x|+2}, 1\}$ $|x-y| < \delta \Rightarrow |y| < |x|+1, \quad |x^2-y^2| < (2|x|+1)(\delta) < \frac{2|x|+1}{2|x|+2} \cdot \epsilon < \epsilon$ f is continuous at x where x < 0.

For any fixed x < 0 and given $\epsilon > 0$, we know |(x+1) - (y-1)| = |x-y|, so $|(x+1) - (y+1)| < \epsilon$ if $|x-y| < \epsilon$ f is continuous at x where x > 0.

Consider a sequence $\{x_k\} \subset \mathbb{R}^+, x_k \to 0$ $\lim_{k\to\infty} f(x_k) = 1 \neq 0 = f(0)$ $\Rightarrow f(x)$ is not continuous at 0.

3. 3.1 problem 5

To show that f(x) is continuous at x > 0 and x < 0 is similar to the previous problem.

To show that f(x) is continuous at x = 0, Consider any sequence $x_k \to 0$, $|x_k| < 1$ ultimately as $k \to \infty$ $|x_k^2| < |x_k|$ ultimately. $|f(x_k)| < |x_k|$ ultimately as $k \to \infty$. $f(x_k) \to 0 = f(0)$ as $k \to \infty$ f(x) is continuous at x = 0.

4. 3.1 problem 13

Let $\{u_k\}$ be a sequence in D, and $u_k \to u \in D$ Then $|f(u_k) - f(u)| < c|u_k - u|$, by the comparison lemma we have $f(u_k) \to f(u)$ as $k \to \infty$ Since $f(u_k) \to f(u)$ for all $u_k \to u$ in Df is continuous on D.

- 5. 3.3 problem 1
 - a. False. Let $f(x) = \sin x$, $f(\mathbb{R}) = [-1, 1] \neq \mathbb{R}$
 - b. False.

Since f is not continuous, we can assign f as

$$f(x) = \begin{cases} 1 & x \in [0, \frac{1}{2}] \\ 0 & x \in (\frac{1}{2}, 1] \end{cases}$$

f([0,1]) = 0, 1 is not an interval

c. False.

Let $D = (0, 1) \cup (2, 3)$, f(x) = x, then $f(D) = (0, 1) \cup (2, 3)$ is not an interval but is continuous

d. True.

f is continuous and [0,1] is an interval. By Theorem 3.14, f([0,1]) is an interval. f(0) and f(1) must be in the interval And since f is strictly increasing, f(0) < f(x) < f(1) for all 0 < x < 1. So f(0) and f(1) are the endpoints of f([0,1]), $\Rightarrow f([0,1]) = [f(0), f(1)]$

6. 3.3 problem 6

Let g(x) = f(x) - x, Since f(x) is bounded, $\exists M > 0$ such that -M < f(x) < Mthen g(x) < 0 for any x > M, g(y) > 0 for any y < -M. By the intermediate value theorem, $\exists z, \quad y < z < x$ such that g(z) = 0 $\Rightarrow \exists z \in \mathbb{R}$ such that f(z) = z.

7. 3.3 problem 10

Suppose that f is not a constant function.

 $\exists r_1 < r_2$ such that $f(r_1) \neq f(r_2)$.

WLOG, suppose $f(r_1) < f(r_2)$,

By the density of irrational numbers, there exists an irrational number c such that $f(r_1) < c < f(r_2)$.

By intermediate value theorem,

 $\exists x, r_1 < x < r_2$ such that f(x) = c

Then this contradicts to our assumption that the image of f consists entirely of rational numbers.

8. 3.4 problem 5

Let $u_n = n$ and $v_n = n + \frac{1}{n}$ Then $|u_n - v_n| = \frac{1}{n} \to 0$ as $n \to \infty$, But $|f(u_n) - f(v_n)| = |u_n^3 - v_n^3| = [3n + 3\frac{1}{n} + \frac{1}{n^3}] \to \infty$ as $n \to \infty$ f is not uniformly continuous.

9. 3.4 problem 8

Let $f(x) = \frac{1}{x-a}$, Let $u_n = a + \frac{1}{n}$ and $v_n = a + \frac{1}{n+1}$, then $|u_n - v_n| = \frac{1}{n} - \frac{1}{n+1} \to 0$ as $n \to \infty$ But $|f(u_n) - f(v_n)| = n + 1 - n = 1 \Rightarrow 0$ as $n \to \infty$ f(x) is not uniformly continuous on I = (a, b)

10. 3.4 problem 10

For any two sequences u_n and v_n such that $|u_n - v_n| \to 0$ as $n \to \infty$ We have $|f(u_n) - f(v_n)| \leq C|u_n - v_n| \to 0$ as $n \to \infty$. So f is uniformly continuous.

11. Prove theorem 3.22

(i \Rightarrow ii) Suppose the $\epsilon - \delta$ criterion is not true. Then $\exists \epsilon > 0$ such that $\forall \delta > 0$, there is $|u - v| < \delta$ but $|f(u) - f(v)| \ge \epsilon$ let $\delta_n = \frac{1}{n}$ Then we can find two sequences u_n, v_n such that $|u_n - v_n| < \delta_n$, but $|f(u_n) - f(v_n)| \ge \epsilon$ for all n, So we have $\lim_{n\to\infty} [u_n - v_n] = 0$, but $\lim_{n\to\infty} [f(u_n) - f(v_n)] \ne 0$ which contradicts (i.) So the $\epsilon - \delta$ criterion must be satisfied if (i) is true.

(ii \Rightarrow i) Let u_n, v_n be sequences such that $u_n - v_n \rightarrow 0$ By (ii), given ϵ , $\exists \delta$ such that $|f(u_n) - f(v_n)| < \epsilon$ if $|u_n - v_n| < \delta$.

Also $\exists N \in \mathbb{N}$ such that $|u_n - v_n| < \delta$ for all n > Nthen for this N, $|f(u_n) - f(v_n)| < \epsilon$ for all n > NSo $\lim_{n \to \infty} [f(u_n) - f(v_n)] = 0$ if $\lim_{n \to \infty} [u_n - v_n] = 0$

12. 3.6 problem 7 $\,$

Let x < yCase 1. 0 < x < y $(y^n - x^n) = (y - x)(y^{n-1} + y^{n-2}x + \dots + yx^{n-2} + x^{n-1})$ (y - x) > 0, and $y^{n-1-k}x^k > 0$ for all $k = 1, \dots, n-1$ since x > 0, y > 0

Case 2. x < 0 < y $x^n < 0 < y^n$ Case 3. x < y < 0then -x > -y > 0 $y^n - x^n = ((-x)^n - (-y)^n)$ since *n* is odd $((-x)^n - (-y)^n) > 0$ from case 1. $y^n > x^n$ for all y > x $f(x) = x^n$ is strictly increasing

Since f is continuous, and strictly increasing, by similar arguments with the ones in 3.3 problem 1.d., we have f([a, b]) = [f(a), f(b)]Since for any $N \in \mathbb{N}$, $\exists b > N, \ a < -N$ such that $b^n > N^n > N, \ a^n < (-N)^n < -N,$ for any $N \in \mathbb{N}, \ \exists a, b$ such that $f([a, b]) = [f(a), f(b)] = [a^n, b^n] \supset [-N, N]$ $\Rightarrow f(\mathbb{R}) = \mathbb{R}$

13. 3.6 problem 11

We know from (3.26) that $(x^n)^m = x^{nm} = x^{mn} = (x^m)^n$ for all integers m, nWe also have $(y^n)^{1/n} = y = (y^{1/n})^n$ for all y > 0 and integer nThen $(x^{1/n})^m = (((x^{1/n})^m)^n)^{1/n} = ((x^{1/n})^{mn})^{1/n} = (((x^{1/n})^n)^m)^{1/n} = (x^m)^{1/n}$