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1. 3.1 problem 1

(a) False
Let

f(x) =

{
0 for x > 0
1 for x 6 0

g(x) =

{
1 for x > 0
0 for x 6 0

Here, f(x) and g(x) are not continuous functions, but (f + g)(x) = 1 is a contin-
uous function.

(b) False
Let

f(x) =

{
1 for x > 0
−1 for x 6 0

Here, f 2(x) = 1 is a continuous function, but f(x) is not a continuous function.

(c) True
Since g is continuous −g is continuous. Since the sum of continuous functions is
continuous, we have f = (f + g) + (−g) is continuous.

(d) True
Given any convergent sequence {xk} in N converging to x ∈ N, we have xk = x
ultimately. So, f(xk) = f(x) ultimately. Hence, every function f : N → R is
continuous.

2. 3.1 problem 3
f(x) is continuous in R\{0}.

For any fixed x > 0 and given ε, we know x2 − y2 = (x + y)(x− y).
By letting δ = min{ ε

2|x|+2
, 1}

|x− y| < δ ⇒ |y| < |x|+ 1, |x2 − y2| < (2|x|+ 1)(δ) < 2|x|+1
2|x|+2

· ε < ε
f is continuous at x where x < 0.

For any fixed x < 0 and given ε > 0, we know |(x + 1)− (y − 1)| = |x− y| ,
so |(x + 1)− (y + 1)| < ε if |x− y| < ε
f is continuous at x where x > 0.

Consider a sequence {xk} ⊂ R+, xk → 0
limk→∞ f(xk) = 1 6= 0 = f(0)
⇒ f(x) is not continuous at 0.

3. 3.1 problem 5
To show that f(x) is continuous at x > 0 and x < 0 is similar to the previous problem.

To show that f(x) is continuous at x = 0,
Consider any sequence xk → 0,
|xk| < 1 ultimately as k →∞
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|x2
k| < |xk| ultimately.

|f(xk)| < |xk| ultimately as k →∞.
f(xk) → 0 = f(0) as k →∞
f(x) is continuous at x = 0.

4. 3.1 problem 13
Let {uk} be a sequence in D, and uk → u ∈ D
Then |f(uk)− f(u)| < c|uk − u|,
by the comparison lemma we have f(uk) → f(u) as k →∞
Since f(uk) → f(u) for all uk → u in D
f is continuous on D.

5. 3.3 problem 1

a. False.
Let f(x) = sin x, f(R) = [−1, 1] 6= R

b. False.
Since f is not continuous, we can assign f as

f(x) =

{
1 x ∈ [0, 1

2
]

0 x ∈ (1
2
, 1]

f([0, 1]) = 0, 1 is not an interval

c. False.
Let D = (0, 1) ∪ (2, 3), f(x) = x,
then f(D) = (0, 1) ∪ (2, 3) is not an interval but is continuous

d. True.
f is continuous and [0, 1] is an interval.
By Theorem 3.14, f([0, 1]) is an interval.
f(0) and f(1) must be in the interval
And since f is strictly increasing, f(0) < f(x) < f(1) for all 0 < x < 1.
So f(0) and f(1) are the endpoints of f([0, 1]),
⇒ f([0, 1]) = [f(0), f(1)]

6. 3.3 problem 6
Let g(x) = f(x)− x,
Since f(x) is bounded, ∃M > 0 such that −M < f(x) < M
then g(x) < 0 for any x > M , g(y) > 0 for any y < −M .
By the intermediate value theorem,
∃z, y < z < x such that g(z) = 0
⇒ ∃z ∈ R such that f(z) = z.

7. 3.3 problem 10
Suppose that f is not a constant function.
∃r1 < r2 such that f(r1) 6= f(r2).
WLOG, suppose f(r1) < f(r2),
By the density of irrational numbers, there exists an irrational number c such that
f(r1) < c < f(r2).
By intermediate value theorem,
∃x, r1 < x < r2 such that f(x) = c
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Then this contradicts to our assumption that the image of f consists entirely of rational
numbers.

8. 3.4 problem 5
Let un = n and vn = n + 1

n

Then |un − vn| = 1
n
→ 0 as n →∞,

But |f(un)− f(vn)| = |u3
n − v3

n| = [3n + 3 1
n

+ 1
n3 ] →∞ as n →∞

f is not uniformly continuous.

9. 3.4 problem 8
Let f(x) = 1

x−a
,

Let un = a + 1
n

and vn = a + 1
n+1

,

then |un − vn| = 1
n
− 1

n+1
→ 0 as n →∞

But |f(un)− f(vn)| = n + 1− n = 1 9 0 as n →∞
f(x) is not uniformly continuous on I = (a, b)

10. 3.4 problem 10
For any two sequences un and vn such that |un − vn| → 0 as n →∞
We have |f(un)− f(vn)| 6 C|un − vn| → 0 as n →∞.
So f is uniformly continuous.

11. Prove theorem 3.22
(i ⇒ ii)
Suppose the ε− δ criterion is not true.
Then ∃ε > 0 such that ∀δ > 0 ,
there is |u− v| < δ but |f(u)− f(v)| > ε
let δn = 1

n

Then we can find two sequences un, vn such that
|un − vn| < δn , but |f(un)− f(vn)| > ε for all n,
So we have limn→∞[un−vn] = 0, but limn→∞[f(un)−f(vn)] 6= 0 which contradicts (i.)
So the ε− δ criterion must be satisfied if (i) is true.

(ii ⇒ i)
Let un, vn be sequences such that un − vn → 0
By (ii), given ε, ∃δ such that |f(un)− f(vn)| < ε if |un − vn| < δ.

Also ∃N ∈ N such that |un − vn| < δ for all n > N
then for this N , |f(un)− f(vn)| < ε for all n > N
So limn→∞[f(un)− f(vn] = 0 if limn→∞[un − vn] = 0

12. 3.6 problem 7
Let x < y
Case 1. 0 < x < y
(yn − xn) = (y − x)(yn−1 + yn−2x + · · ·+ yxn−2 + xn−1)
(y − x) > 0, and yn−1−kxk > 0 for all k = 1, · · · , n− 1 since x > 0, y > 0

Case 2. x < 0 < y
xn < 0 < yn
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Case 3. x < y < 0
then −x > −y > 0
yn − xn=((−x)n − (−y)n) since n is odd
((−x)n − (−y)n) > 0 from case 1.

yn > xn for all y > x
f(x) = xn is strictly increasing

Since f is continuous, and strictly increasing, by similar arguments with the ones in
3.3 problem 1.d., we have f([a, b]) = [f(a), f(b)]
Since for any N ∈ N,
∃b > N, a < −N such that bn > Nn > N, an < (−N)n < −N ,
for any N ∈ N, ∃a, b such that f([a, b]) = [f(a), f(b)] = [an, bn] ⊃ [−N, N ]
⇒ f(R) = R

13. 3.6 problem 11
We know from (3.26) that (xn)m = xnm = xmn = (xm)n for all integers m, n
We also have (yn)1/n = y = (y1/n)n for all y > 0 and integer n
Then (x1/n)m = (((x1/n)m)n)1/n = ((x1/n)mn)1/n = (((x1/n)n)m)1/n = (xm)1/n
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