HW 6

1. 3.1 problem 1
(a) False

Let

$$
\begin{gathered}
f(x)= \begin{cases}0 & \text { for } x>0 \\
1 & \text { for } x \leqslant 0\end{cases} \\
g(x)= \begin{cases}1 & \text { for } x>0 \\
0 & \text { for } x \leqslant 0\end{cases}
\end{gathered}
$$

Here, $f(x)$ and $g(x)$ are not continuous functions, but $(f+g)(x)=1$ is a continuous function.
(b) False

Let

$$
f(x)=\left\{\begin{array}{lr}
1 & \text { for } x>0 \\
-1 & \text { for } x \leqslant 0
\end{array}\right.
$$

Here, $f^{2}(x)=1$ is a continuous function, but $f(x)$ is not a continuous function.
(c) True

Since g is continuous $-g$ is continuous. Since the sum of continuous functions is continuous, we have $f=(f+g)+(-g)$ is continuous.
(d) True

Given any convergent sequence $\left\{x_{k}\right\}$ in \mathbb{N} converging to $x \in \mathbb{N}$, we have $x_{k}=x$ ultimately. So, $f\left(x_{k}\right)=f(x)$ ultimately. Hence, every function $f: \mathbb{N} \rightarrow \mathbb{R}$ is continuous.
2. 3.1 problem 3
$f(x)$ is continuous in $\mathbb{R} \backslash\{0\}$.

For any fixed $x>0$ and given ϵ, we know $x^{2}-y^{2}=(x+y)(x-y)$.
By letting $\delta=\min \left\{\frac{\epsilon}{2|x|+2}, 1\right\}$
$|x-y|<\delta \Rightarrow|y|<|x|+1, \quad\left|x^{2}-y^{2}\right|<(2|x|+1)(\delta)<\frac{2|x|+1}{2|x|+2} \cdot \epsilon<\epsilon$
f is continuous at x where $x<0$.

For any fixed $x<0$ and given $\epsilon>0$, we know $|(x+1)-(y-1)|=|x-y|$, so $|(x+1)-(y+1)|<\epsilon$ if $|x-y|<\epsilon$
f is continuous at x where $x>0$.

Consider a sequence $\left\{x_{k}\right\} \subset \mathbb{R}^{+}, x_{k} \rightarrow 0$
$\lim _{k \rightarrow \infty} f\left(x_{k}\right)=1 \neq 0=f(0)$
$\Rightarrow f(x)$ is not continuous at 0 .

3. 3.1 problem 5

To show that $f(x)$ is continuous at $x>0$ and $x<0$ is similar to the previous problem.

To show that $f(x)$ is continuous at $x=0$,
Consider any sequence $x_{k} \rightarrow 0$,
$\left|x_{k}\right|<1$ ultimately as $k \rightarrow \infty$
$\left|x_{k}^{2}\right|<\left|x_{k}\right|$ ultimately.
$\left|f\left(x_{k}\right)\right|<\left|x_{k}\right|$ ultimately as $k \rightarrow \infty$.
$f\left(x_{k}\right) \rightarrow 0=f(0)$ as $k \rightarrow \infty$
$f(x)$ is continuous at $x=0$.
4. 3.1 problem 13

Let $\left\{u_{k}\right\}$ be a sequence in D, and $u_{k} \rightarrow u \in D$
Then $\left|f\left(u_{k}\right)-f(u)\right|<c\left|u_{k}-u\right|$,
by the comparison lemma we have $f\left(u_{k}\right) \rightarrow f(u)$ as $k \rightarrow \infty$
Since $f\left(u_{k}\right) \rightarrow f(u)$ for all $u_{k} \rightarrow u$ in D
f is continuous on D.

5. 3.3 problem 1

a. False.

Let $f(x)=\sin x, f(\mathbb{R})=[-1,1] \neq \mathbb{R}$
b. False.

Since f is not continuous, we can assign f as

$$
f(x)= \begin{cases}1 & x \in\left[0, \frac{1}{2}\right] \\ 0 & x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

$f([0,1])=0,1$ is not an interval
c. False.

Let $D=(0,1) \cup(2,3), f(x)=x$,
then $f(D)=(0,1) \cup(2,3)$ is not an interval but is continuous
d. True.
f is continuous and $[0,1]$ is an interval.
By Theorem 3.14, $f([0,1])$ is an interval.
$f(0)$ and $f(1)$ must be in the interval
And since f is strictly increasing, $f(0)<f(x)<f(1)$ for all $0<x<1$.
So $f(0)$ and $f(1)$ are the endpoints of $f([0,1])$,
$\Rightarrow f([0,1])=[f(0), f(1)]$
6. 3.3 problem 6

Let $g(x)=f(x)-x$,
Since $f(x)$ is bounded, $\exists M>0$ such that $-M<f(x)<M$
then $g(x)<0$ for any $x>M, g(y)>0$ for any $y<-M$.
By the intermediate value theorem,
$\exists z, \quad y<z<x$ such that $g(z)=0$
$\Rightarrow \exists z \in \mathbb{R}$ such that $f(z)=z$.
7. 3.3 problem 10

Suppose that f is not a constant function.
$\exists r_{1}<r_{2}$ such that $f\left(r_{1}\right) \neq f\left(r_{2}\right)$.
WLOG, suppose $f\left(r_{1}\right)<f\left(r_{2}\right)$,
By the density of irrational numbers, there exists an irrational number c such that $f\left(r_{1}\right)<c<f\left(r_{2}\right)$.
By intermediate value theorem,
$\exists x, r_{1}<x<r_{2}$ such that $f(x)=c$

Then this contradicts to our assumption that the image of f consists entirely of rational numbers.
8. 3.4 problem 5

Let $u_{n}=n$ and $v_{n}=n+\frac{1}{n}$
Then $\left|u_{n}-v_{n}\right|=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$,
But $\left|f\left(u_{n}\right)-f\left(v_{n}\right)^{n}\right|=\left|u_{n}^{3}-v_{n}^{3}\right|=\left[3 n+3 \frac{1}{n}+\frac{1}{n^{3}}\right] \rightarrow \infty$ as $n \rightarrow \infty$
f is not uniformly continuous.
9. 3.4 problem 8

Let $f(x)=\frac{1}{x-a}$,
Let $u_{n}=a+\frac{1}{n}$ and $v_{n}=a+\frac{1}{n+1}$,
then $\left|u_{n}-v_{n}\right|=\frac{1}{n}-\frac{1}{n+1} \rightarrow 0$ as $n \rightarrow \infty$
But $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|=n+1-n=1 \nrightarrow 0$ as $n \rightarrow \infty$
$f(x)$ is not uniformly continuous on $I=(a, b)$
10. 3.4 problem 10

For any two sequences u_{n} and v_{n} such that $\left|u_{n}-v_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$
We have $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \leqslant C\left|u_{n}-v_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
So f is uniformly continuous.
11. Prove theorem 3.22
(i $\Rightarrow \mathrm{ii}$)
Suppose the $\epsilon-\delta$ criterion is not true.
Then $\exists \epsilon>0$ such that $\forall \delta>0$,
there is $|u-v|<\delta$ but $|f(u)-f(v)| \geqslant \epsilon$
let $\delta_{n}=\frac{1}{n}$
Then we can find two sequences u_{n}, v_{n} such that
$\left|u_{n}-v_{n}\right|<\delta_{n}$, but $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right| \geqslant \epsilon$ for all n,
So we have $\lim _{n \rightarrow \infty}\left[u_{n}-v_{n}\right]=0$, but $\lim _{n \rightarrow \infty}\left[f\left(u_{n}\right)-f\left(v_{n}\right)\right] \neq 0$ which contradicts (i.)
So the $\epsilon-\delta$ criterion must be satisfied if (i) is true.
(ii \Rightarrow i)
Let u_{n}, v_{n} be sequences such that $u_{n}-v_{n} \rightarrow 0$
By (ii), given $\epsilon, \exists \delta$ such that $\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|<\epsilon$ if $\left|u_{n}-v_{n}\right|<\delta$.
Also $\exists N \in \mathbb{N}$ such that $\left|u_{n}-v_{n}\right|<\delta$ for all $n>N$
then for this $N,\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|<\epsilon$ for all $n>N$
So $\lim _{n \rightarrow \infty}\left[f\left(u_{n}\right)-f\left(v_{n}\right]=0\right.$ if $\lim _{n \rightarrow \infty}\left[u_{n}-v_{n}\right]=0$
12. 3.6 problem 7

Let $x<y$
Case 1. $0<x<y$
$\left(y^{n}-x^{n}\right)=(y-x)\left(y^{n-1}+y^{n-2} x+\cdots+y x^{n-2}+x^{n-1}\right)$
$(y-x)>0$, and $y^{n-1-k} x^{k}>0$ for all $k=1, \cdots, n-1$ since $x>0, y>0$

Case 2. $x<0<y$
$x^{n}<0<y^{n}$

Case 3. $x<y<0$
then $-x>-y>0$
$y^{n}-x^{n}=\left((-x)^{n}-(-y)^{n}\right)$ since n is odd
$\left((-x)^{n}-(-y)^{n}\right)>0$ from case 1 .
$y^{n}>x^{n}$ for all $y>x$
$f(x)=x^{n}$ is strictly increasing

Since f is continuous, and strictly increasing, by similar arguments with the ones in 3.3 problem 1.d., we have $f([a, b])=[f(a), f(b)]$ Since for any $N \in \mathbb{N}$,
$\exists b>N, a<-N$ such that $b^{n}>N^{n}>N, a^{n}<(-N)^{n}<-N$, for any $N \in \mathbb{N}, \exists a, b$ such that $f([a, b])=[f(a), f(b)]=\left[a^{n}, b^{n}\right] \supset[-N, N]$ $\Rightarrow f(\mathbb{R})=\mathbb{R}$
13. 3.6 problem 11

We know from (3.26) that $\left(x^{n}\right)^{m}=x^{n m}=x^{m n}=\left(x^{m}\right)^{n}$ for all integers m, n We also have $\left(y^{n}\right)^{1 / n}=y=\left(y^{1 / n}\right)^{n}$ for all $y>0$ and integer n
Then $\left(x^{1 / n}\right)^{m}=\left(\left(\left(x^{1 / n}\right)^{m}\right)^{n}\right)^{1 / n}=\left(\left(x^{1 / n}\right)^{m n}\right)^{1 / n}=\left(\left(\left(x^{1 / n}\right)^{n}\right)^{m}\right)^{1 / n}=\left(x^{m}\right)^{1 / n}$

