HW 7

1. 3.7 Problem 2
a. Let $\left\{x_{n}\right\}$ be a sequence converging to 1 , with $x_{n} \neq 1$ for all n.
$\lim _{n \rightarrow \infty} \frac{x_{n}^{4}-1}{x_{n}-1}=\lim _{n \rightarrow \infty}\left[x_{n}^{3}+x_{n}^{2}+x_{n}+1\right]=4$
Since this is true for all sequences $\left\{x_{n}\right\} \subset \mathbb{R} \backslash\{1\}$ converging to 1 ,
We get $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}=4$.
b. Let $\left\{x_{n}\right\}$ be a sequence converging to 1 , with $x_{n} \neq 1$ for all n.
$\lim _{n \rightarrow \infty} \frac{\sqrt{x_{n}}-1}{x_{n}-1}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{x_{n}}+1}=\frac{1}{2}$
Since this is true for all sequences $\left\{x_{n}\right\} \subset \mathbb{R} \backslash\{1\}$ converging to 1 , We get $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\frac{1}{2}$.
2. 3.7 Problem 4
a. Let $\left\{x_{n}\right\}$ be a sequence converging to 0 , with $x_{n} \neq 0$ for all n.
$\lim _{n \rightarrow \infty} \frac{1+1 / x_{n}}{1+1 / x_{n}^{2}}=\lim _{n \rightarrow \infty} \frac{\left(x_{n}+1\right) x_{n}}{x_{n}^{2}+1}=\frac{(1)(0)}{1}=0$
Since this is true for all sequences $\left\{x_{n}\right\} \subset \mathbb{R} \backslash\{0\}$ converging to 0 ,
We get $\lim _{x \rightarrow 0} \frac{1+1 / x}{1+1 / x^{2}}=0$.
b. Let $\left\{x_{n}\right\}$ be a sequence converging to 0 , with $x_{n} \neq 0$ for all n.
$\lim _{n \rightarrow \infty} \frac{1+1 / x_{n}^{2}}{1+1 / x_{n}}=\lim _{n \rightarrow \infty} \frac{\left(x_{n}^{2}+1\right)}{\left(x_{n}+1\right) x_{n}}=\infty$
Since this is true for all sequences $\left\{x_{n}\right\} \subset \mathbb{R} \backslash\{0\}$ converging to 0 , We get $\lim _{x \rightarrow 0} \frac{1+1 / x^{2}}{1+1 / x}=\infty$.
c. Let $\left\{x_{n}\right\}$ be a sequence converging to 0 , with $x_{n} \neq 0$ for all n.
$\lim _{n \rightarrow \infty} \frac{1+1 /\left(x_{n}-1\right)}{2+1 /\left(x_{n}-1\right)^{2}}=\lim _{n \rightarrow \infty} \frac{\left(x_{n}-1+1\right)\left(x_{n}-1\right)}{2\left(x_{n}-1\right)^{2}+1}=\frac{(1)(0)}{1}=0$
Since this is true for all sequences $\left\{x_{n}\right\} \subset \mathbb{R} \backslash\{0\}$ converging to 0 ,
We get $\lim _{x \rightarrow 0} \frac{1+1 /(x-1)}{2+1 /(x-1)^{2}}=0$.
3. 3.7 Problem 6

Not necessarily.
Take $D=\{0\}$, (the set that consists of only the point 0)
Then $\sup D=0$, but 0 is not a limit point of D.
(D has only an isolated point)

4. 3.7 Problem 8

a. Given a point x_{0} in D.

Either $\exists r$ such that $\forall x \in D \backslash\left\{x_{0}\right\}, x \notin\left(x_{0}-r, x_{0}+r\right)$,
or $\forall r>0, \exists x$ such that $x \in D \backslash\{0\}$ and $x \in\left(x_{0}-r, x_{0}+r\right)$
In the first case, x_{0} is an isolated point.
In the second case, we can find $\left\{x_{k}\right\} \subset D \backslash\left\{x_{0}\right\}$ such that $x_{k} \in\left(x_{0}-\frac{1}{2^{k}}, x_{0}+\frac{1}{2^{k}}\right)$
Then, $x_{k} \rightarrow x_{0}$, so x_{0} is a limit point.
So x_{0} is either an isolated point or a limit point.
b. x_{0} is an isolated point $\Rightarrow \exists r>0$ such that for all $x \in D \backslash\left\{x_{0}\right\}, x \notin\left(x_{0}-r, x_{0}+r\right)$.
\Rightarrow for any $x_{k} \rightarrow x_{0}, x_{k}=x_{0}$ ultimately as $k \rightarrow \infty$
and so $f\left(x_{k}\right)=f\left(x_{0}\right)$ ultimately as $k \rightarrow \infty$
$\Rightarrow f\left(x_{k}\right) \rightarrow f\left(x_{0}\right)$ for $x_{k} \rightarrow x_{0}$
$\Rightarrow f$ is continuous at x_{0}.
c. Since x_{0} is a limit point, there exists $\left\{x_{k}\right\} \subset D \backslash\left\{x_{0}\right\}$ such that $x_{k} \rightarrow x_{0}$.

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) \\
& \Leftrightarrow \lim _{k \rightarrow \infty} f\left(x_{k}\right) \rightarrow f\left(x_{0}\right) \text { for all } x_{k} \rightarrow x_{0}, \text { where }\left\{x_{k}\right\} \subset D \backslash\left\{x_{0}\right\} \\
& \left.\Leftrightarrow \lim _{k \rightarrow \infty} f\left(x_{k}\right) \rightarrow f\left(x_{0}\right) \text { for all } x_{k} \rightarrow x_{0} \text { (Since } f\left(x_{k}\right)=f\left(x_{0}\right) \text { for } x_{k}=x_{0}\right) \\
& \Leftrightarrow f \text { is continuous at } x_{0} .
\end{aligned}
$$

5. 3.7 Problem 12

Let $M=\inf _{x \in(a, b)}\{f(x)\}$
for any $\epsilon>0$ there exists $x \in(a, b)$ such that $f(x)<M+\epsilon$
Given any sequence $\left\{x_{k}\right\}$ converging to a,
Since $x>a$
$\exists N \in \mathbb{N}$ such that $x_{k}<x$ for all $k>N$
then since f ia monotone, $f\left(x_{k}\right) \leqslant f(x)<M+\epsilon$ for all $k>N$
also $M \leq f\left(x_{k}\right)$ for all k
$\Rightarrow \forall \epsilon>0 \quad \exists N \in \mathbb{N}$ such that $M \leq f\left(x_{k}\right)<M+\epsilon$ for all $k>N$
By the definition of limit, $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=M$
$\Rightarrow \lim _{x \rightarrow a} f(x)$ exists and equals $\inf _{x \in(a, b)}\{f(x)\}$
6. 4.1 Problem 4
a. $f^{\prime}(x)=\lim _{x \rightarrow 1} \frac{\sqrt{x+1}-\sqrt{2}}{x-1}=\lim _{x \rightarrow 1} \frac{\sqrt{x+1}-\sqrt{2}}{(x+1)-(2)}=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+1}+\sqrt{2}}=\frac{1}{2 \sqrt{2}}$
b. $f^{\prime}(x)=\lim _{x \rightarrow 1} \frac{x^{3}+2 x-3}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+3\right)}{(x-1}=\lim _{x \rightarrow 1}\left[x^{2}+x+3\right]=5$
c. $f^{\prime}(x)=\lim _{x \rightarrow 1} \frac{1 /\left(1+x^{2}\right)-\frac{1}{2}}{x-1}=\lim _{x \rightarrow 1} \frac{1-x^{2}}{2\left(1+x^{2}\right)(x-1)}=\lim _{x \rightarrow 1} \frac{-(1+x)}{2\left(1+x^{2}\right)}=-\frac{1}{2}$
7. 4.1 Problem 6

Let $\left\{x_{k}\right\} \subset J \backslash\left\{x_{0}\right\}$ be a sequence converging to x_{0}
By continuity of h and the property $h(x) \neq h\left(x_{0}\right)$ for $x \neq x_{0}$,
we have the sequence $\left\{h\left(x_{k}\right)\right\} \subset I \backslash\left\{h\left(x_{0}\right)\right\}$ converging to $h\left(x_{0}\right)$
Since f is differentiable at $h\left(x_{0}\right)$,
$f^{\prime}\left(h\left(x_{0}\right)\right)=\lim _{h\left(x_{k}\right) \rightarrow h\left(x_{0}\right)} \frac{f\left(h\left(x_{k}\right)\right)-f\left(h\left(x_{0}\right)\right)}{h\left(x_{k}\right)-h\left(x_{0}\right)}$
which is equal to $\lim _{x_{k} \rightarrow x_{0}} \frac{f\left(h\left(x_{k}\right)\right)-f\left(h\left(x_{0}\right)\right)}{h\left(x_{k}\right)-h\left(x_{0}\right)}$
Since this is true for all sequences $\left\{x_{k}\right\} \subset J \backslash\left\{x_{0}\right\}$ converging to x_{0}, we have $f^{\prime}\left(h\left(x_{0}\right)\right)=\lim _{x \rightarrow x_{0}} \frac{f(h(x))-f\left(h\left(x_{0}\right)\right)}{h(x)-h\left(x_{0}\right)}$
8. 4.1 Problem 7
a. Let $h(x)=1+x, x_{0}=0$.

We see that $(x+1) \neq\left(x_{0}+1\right)$ for all $x \neq x_{0}$,
Exercise 6 can be applied to get the result.
b. Let $h(x)=\sqrt{x}, x_{0}=1$.

We see that $\sqrt{x} \neq \sqrt{x_{0}}$ for all $x \neq x_{0}, x>0$
Exercise 6 can be applied to get the result.
c. Let $h(x)=x^{2}, x_{0}=1$.

We see that $x^{2} \neq x_{0}^{2}$ for all $x \neq x_{0}, x>0$
Exercise 6 can be applied to get the result.
d. $\lim _{x \rightarrow 1} \frac{f\left(x^{2}\right)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{f\left(x^{2}\right)-f(1)}{x^{2}-1}(x+1)=2 f^{\prime}(1)$
where the last equality is obtained by using Exercise 6.
e. $\lim _{x \rightarrow 1} \frac{f\left(x^{3}\right)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{f\left(x^{3}\right)-f(1)}{x^{3}-1}\left(x^{2}+x+1\right)=3 f^{\prime}(1)$ where the last equality is obtained by using Exercise 6 .
9. 4.1 Problem 9
$0 \leqslant f(0) \leqslant 0 \Rightarrow f(0)=0$
$\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}$
$-\left|x^{2} \leqslant|f(x)| \leqslant|x|^{2}\right.$
$\Rightarrow-|x| \leqslant\left|\frac{f(x)}{x}\right| \leqslant|x|$
Limit of $\frac{f(x)}{x}$ exists.
$\Rightarrow f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$
10. 4.1 Problem 18
$f(0)=1+4 \cdot 0+0 \cdot h(0)=1$
$f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{\left(1+4 x+x^{2} h(x)\right)-1}{x-0}=\lim _{x \rightarrow 0}[4+x h(x)]$
Since h is bounded, $\exists M>0$ such that $-M \leqslant|h(x)| \leqslant M$
$\Rightarrow-|x| M \leqslant|x h(x)| \leqslant|x| M$
$\Rightarrow \lim _{x \rightarrow 0} x h(x)=0$
$\Rightarrow f^{\prime}(0)=\lim _{x \rightarrow 0}[4+x h(x)]=4$
11. Let $\lim _{x \rightarrow x_{0}} f(x)=L, \lim _{x \rightarrow x_{0}} g(x)=M$. Then we have $\lim _{x \rightarrow x_{0}}(f+g)(x)=L+M$, $\lim _{x \rightarrow x_{0}}(f g)(x)=L M, \lim _{x \rightarrow x_{0}} \frac{f}{g}(x)=\frac{L}{M}$

See Theorem 3.36 of text.
12. See Theorem 4.6

