$\rm HW~7$

- 1. 3.7 Problem 2
 - a. Let $\{x_n\}$ be a sequence converging to 1, with $x_n \neq 1$ for all n. $\lim_{n\to\infty} \frac{x_n^4-1}{x_n-1} = \lim_{n\to\infty} [x_n^3 + x_n^2 + x_n + 1] = 4$ Since this is true for all sequences $\{x_n\} \subset \mathbb{R} \setminus \{1\}$ converging to 1, We get $\lim_{x\to 1} \frac{x^4-1}{x-1} = 4$.
 - b. Let $\{x_n\}$ be a sequence converging to 1, with $x_n \neq 1$ for all n. $\lim_{n\to\infty} \frac{\sqrt{x_n-1}}{x_n-1} = \lim_{n\to\infty} \frac{1}{\sqrt{x_n+1}} = \frac{1}{2}$ Since this is true for all sequences $\{x_n\} \subset \mathbb{R} \setminus \{1\}$ converging to 1, We get $\lim_{x\to 1} \frac{\sqrt{x-1}}{x-1} = \frac{1}{2}$.
- 2. 3.7 Problem 4
 - a. Let $\{x_n\}$ be a sequence converging to 0, with $x_n \neq 0$ for all n. $\lim_{n\to\infty} \frac{1+1/x_n}{1+1/x_n^2} = \lim_{n\to\infty} \frac{(x_n+1)x_n}{x_n^2+1} = \frac{(1)(0)}{1} = 0$ Since this is true for all sequences $\{x_n\} \subset \mathbb{R} \setminus \{0\}$ converging to 0, We get $\lim_{x\to 0} \frac{1+1/x}{1+1/x^2} = 0$.
 - b. Let $\{x_n\}$ be a sequence converging to 0, with $x_n \neq 0$ for all n. $\lim_{n\to\infty} \frac{1+1/x_n^2}{1+1/x_n} = \lim_{n\to\infty} \frac{(x_n^2+1)}{(x_n+1)x_n} = \infty$ Since this is true for all sequences $\{x_n\} \subset \mathbb{R} \setminus \{0\}$ converging to 0, We get $\lim_{x\to 0} \frac{1+1/x^2}{1+1/x} = \infty$.
 - c. Let $\{x_n\}$ be a sequence converging to 0, with $x_n \neq 0$ for all n. $\lim_{n\to\infty} \frac{1+1/(x_n-1)}{2+1/(x_n-1)^2} = \lim_{n\to\infty} \frac{(x_n-1+1)(x_n-1)}{2(x_n-1)^2+1} = \frac{(1)(0)}{1} = 0$ Since this is true for all sequences $\{x_n\} \subset \mathbb{R} \setminus \{0\}$ converging to 0, We get $\lim_{x\to 0} \frac{1+1/(x-1)}{2+1/(x-1)^2} = 0$.
- 3. 3.7 Problem 6

Not necessarily. Take $D = \{0\}$,(the set that consists of only the point 0)

- Then $\sup D = 0$, but 0 is not a limit point of D. (D has only an isolated point)
- 4. 3.7 Problem 8
 - a. Given a point x_0 in D. Either $\exists r$ such that $\forall x \in D \setminus \{x_0\}, x \notin (x_0 - r, x_0 + r),$ or $\forall r > 0, \exists x$ such that $x \in D \setminus \{0\}$ and $x \in (x_0 - r, x_0 + r)$ In the first case, x_0 is an isolated point. In the second case, we can find $\{x_k\} \subset D \setminus \{x_0\}$ such that $x_k \in (x_0 - \frac{1}{2^k}, x_0 + \frac{1}{2^k})$ Then, $x_k \to x_0$, so x_0 is a limit point. So x_0 is either an isolated point or a limit point.
 - b. x_0 is an isolated point $\Rightarrow \exists r > 0$ such that for all $x \in D \setminus \{x_0\}$, $x \notin (x_0 r, x_0 + r)$. \Rightarrow for any $x_k \to x_0$, $x_k = x_0$ ultimately as $k \to \infty$ and so $f(x_k) = f(x_0)$ ultimately as $k \to \infty$ $\Rightarrow f(x_k) \to f(x_0)$ for $x_k \to x_0$ $\Rightarrow f$ is continuous at x_0 .

c. Since x_0 is a limit point, there exists $\{x_k\} \subset D \setminus \{x_0\}$ such that $x_k \to x_0$.

 $\lim_{x \to x_0} f(x) = f(x_0)$ $\Leftrightarrow \lim_{k \to \infty} f(x_k) \to f(x_0) \text{ for all } x_k \to x_0, \text{ where } \{x_k\} \subset D \setminus \{x_0\}$ $\Leftrightarrow \lim_{k \to \infty} f(x_k) \to f(x_0) \text{ for all } x_k \to x_0 \text{ (Since } f(x_k) = f(x_0) \text{ for } x_k = x_0)$ $\Leftrightarrow f \text{ is continuous at } x_0.$

5. 3.7 Problem 12

Let $M = \inf_{x \in (a,b)} \{f(x)\}$ for any $\epsilon > 0$ there exists $x \in (a,b)$ such that $f(x) < M + \epsilon$ Given any sequence $\{x_k\}$ converging to a, Since x > a $\exists N \in \mathbb{N}$ such that $x_k < x$ for all k > Nthen since f ia monotone, $f(x_k) \leq f(x) < M + \epsilon$ for all k > Nalso $M \leq f(x_k)$ for all k $\Rightarrow \forall \epsilon > 0 \quad \exists N \in \mathbb{N}$ such that $M \leq f(x_k) < M + \epsilon$ for all k > NBy the definition of limit, $\lim_{k \to \infty} f(x_k) = M$ $\Rightarrow \lim_{x \to a} f(x)$ exists and equals $\inf_{x \in (a,b)} \{f(x)\}$

6. 4.1 Problem 4

a.
$$f'(x) = \lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2}}{x-1} = \lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2}}{(x+1) - (2)} = \lim_{x \to 1} \frac{1}{\sqrt{x+1} + \sqrt{2}} = \frac{1}{2\sqrt{2}}$$

b. $f'(x) = \lim_{x \to 1} \frac{x^3 + 2x - 3}{x-1} = \lim_{x \to 1} \frac{(x-1)(x^2 + x + 3)}{(x-1)} = \lim_{x \to 1} [x^2 + x + 3] = 5$
c. $f'(x) = \lim_{x \to 1} \frac{1/(1+x^2) - \frac{1}{2}}{x-1} = \lim_{x \to 1} \frac{1-x^2}{2(1+x^2)(x-1)} = \lim_{x \to 1} \frac{-(1+x)}{2(1+x^2)} = -\frac{1}{2}$

7. 4.1 Problem 6

Let $\{x_k\} \subset J \setminus \{x_0\}$ be a sequence converging to x_0 By continuity of h and the property $h(x) \neq h(x_0)$ for $x \neq x_0$, we have the sequence $\{h(x_k)\} \subset I \setminus \{h(x_0)\}$ converging to $h(x_0)$ Since f is differentiable at $h(x_0)$, $f'(h(x_0)) = \lim_{h(x_k) \to h(x_0)} \frac{f(h(x_k)) - f(h(x_0))}{h(x_k) - h(x_0)}$ which is equal to $\lim_{x_k \to x_0} \frac{f(h(x_k)) - f(h(x_0))}{h(x_k) - h(x_0)}$ Since this is true for all sequences $\{x_k\} \subset J \setminus \{x_0\}$ converging to x_0 , we have $f'(h(x_0)) = \lim_{x \to x_0} \frac{f(h(x)) - f(h(x_0))}{h(x) - h(x_0)}$

- 8. 4.1 Problem 7
 - a. Let h(x) = 1 + x, $x_0 = 0$. We see that $(x + 1) \neq (x_0 + 1)$ for all $x \neq x_0$, Exercise 6 can be applied to get the result.
 - b. Let $h(x) = \sqrt{x}$, $x_0 = 1$. We see that $\sqrt{x} \neq \sqrt{x_0}$ for all $x \neq x_0$, x > 0Exercise 6 can be applied to get the result.
 - c. Let $h(x) = x^2$, $x_0 = 1$. We see that $x^2 \neq x_0^2$ for all $x \neq x_0$, x > 0Exercise 6 can be applied to get the result.
 - d. $\lim_{x \to 1} \frac{f(x^2) f(1)}{x 1} = \lim_{x \to 1} \frac{f(x^2) f(1)}{x^2 1} (x + 1) = 2f'(1)$ where the last equality is obtained by using Exercise 6.

- e. $\lim_{x \to 1} \frac{f(x^3) f(1)}{x 1} = \lim_{x \to 1} \frac{f(x^3) f(1)}{x^3 1} (x^2 + x + 1) = 3f'(1)$ where the last equality is obtained by using Exercise 6.
- 9. 4.1 Problem 9

$$0 \leq f(0) \leq 0 \Rightarrow f(0) = 0$$

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}$$

$$-|x|^2 \leq |f(x)| \leq |x|^2$$

$$\Rightarrow -|x| \leq |\frac{f(x)}{x}| \leq |x|$$
Limit of $\frac{f(x)}{x}$ exists.

$$\Rightarrow f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = 0$$

10. 4.1 Problem 18 $f(0) = 1 + 4 \cdot 0 + 0 \cdot h(0) = 1$

> $f'(0) = \lim_{x \to 0} \frac{(1+4x+x^2h(x))-1}{x-0} = \lim_{x \to 0} [4+xh(x)]$ Since h is bounded, $\exists M > 0$ such that $-M \leq |h(x)| \leq M$ $\Rightarrow -|x|M \leq |xh(x)| \leq |x|M$ $\Rightarrow \lim_{x \to 0} xh(x) = 0$ $\Rightarrow f'(0) = \lim_{x \to 0} [4+xh(x)] = 4$

11. Let $\lim_{x \to x_0} f(x) = L$, $\lim_{x \to x_0} g(x) = M$. Then we have $\lim_{x \to x_0} (f+g)(x) = L + M$, $\lim_{x \to x_0} (fg)(x) = LM$, $\lim_{x \to x_0} \frac{f}{g}(x) = \frac{L}{M}$

See Theorem 3.36 of text.

12. See Theorem 4.6