
HW 8.

1. 4.3 Problem 1

a. False.
Let f(x) = x3, f(x) is strictly increasing, but f ′(0) = 0

b. True.
Since f is nondecreasing, we have f(x) 6 f(y) if x < y.

So f(x)−f(x0)
x−x0

> 0 for all x, x0 ∈ R
By Lemma 2.21, limx→x0

f(x)−f(x0)
x−x0

> 0
f ′(x0) > 0 for all points x0 in R

c. True.
Since f(0) > f(x) for all x ∈ [−1, 1],
f(x)−f(0)

x−0
6 0 for x > 0

So limx→0+
f(x)−f(0)

x−0
6 0

f(x)−f(0)
x−0

> 0 for x < 0

So limx→0−
f(x)−f(0)

x−0
> 0

Since derivative exists, both limits are equal.
f ′(0) = limx→0

f(x)−f(0)
x−0

= 0

d. False
Let f(x) = x
f(1) > f(x) for all x ∈ [−1, 1]
but f ′(1) = 1 6= 0

2. 4.3 Problem 4
f ′(x) = 3x2 − 3 = 3(x2 − 1) < 0 for 0 < x < 1
⇒ f(x) > f(y) for all 0 < x < y < 1
If f(x) has two solutions in (0, 1), then we would have f(x) = f(y) = 0 for some
0 < x < y < 1, which contradicts the previous statement.

3. 4.3 Problem 7
You can use Rolle’s Theorem as follows.
f ′(x) = nxn−1 + a
f ′′(x) = n(n− 1)xn−2 > 0 for all x ∈ R since n is even ⇒ f ′ is strictly increasing.
If f has three or more zeros,
∃a, b, c such that f(a) = f(b) = f(c) = 0.
Then by Rolle’s Theorem ∃x ∈ (a, b) and y ∈ (b, c)
such that f ′(x) = 0 and f ′(y) = 0
But f ′ cannot have two distinct zeros since f ′ is strictly increasing.
Therefore, f has at most two zeros.

If n is odd, there could be one or three solutions depending on the values of a, b.
If a > 0, then f ′(x) > 0 for all x, f(x) is strictly increasing. So f(x) has exactly one
solution in this case.
If a = 0, then f(x) = xn + b is strictly increasing. f(x) has only one solution.

If a < 0 then f(x) is increasing in the intervals (−∞,−(−a
n

)
1

n−1 ) and ((−a
n

)
1

n−1 ,∞),

decreasing in the interval (−(−a
n

)
1

n−1 , (−a
n

)
1

n−1 ).
So depending on b, f(x) can have one or three solutions.
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4. 4.3 Problem 11
Suppose the contrary. (Suppose f has n + 1 or more solutions)
Then ∃a1 < a2 < · · · < an+1 such that
f(a1) = f(a2) = · · · = f(an+1) = 0
Then by Rolle’s theorem, there exists x1, x2, · · · , xn

such that a1 < x1 < a2 < x2 < a3 < · · · < an < xn < xn+1 and
f ′(x1) = f ′(x2) = · · · = f ′(xn) = 0,
but this contradicts to the fact that f ′ has at most n− 1 zeros.
So f can have at most n solutions (zeros).

5. 4.4 Problem 3

a. f ′(t) = 2t, g′(t) = 3t2
f(1)−f(0)
g(1)−g(0)

= 1−0
1−0

f ′(c)
g′(c)

= 2c
3c2

= 2
3c

so if c = 2
3
,we have

f(1)−f(0)
g(1)−g(0)

= f ′(c)
g′(c)

b. If f(1)− f(0) = f ′(c)(1− 0), then f ′(c) = 1, ⇒ c = 1
2

If g(1)− g(0) = g′(0)(1− 0), then g′(c) = 1, ⇒ c = 1√
3

There is no c that satisfies both equations.

6. 4.4 Problem 5
By Theorem 4.24, and the condition f(0) = f ′(0) = · · · = f (n−1)(0) = 0
for any x 6= 0, there is a point z strictly between x and 0 such that

f(x) = f (n)(z)
n!

(x)n

Since f (n) is bounded, ∃N such that |f (n)(x)| < N for all x ∈ (−1, 1)

|f(x)| = |f
(n)(z)
n!

(x)n| 6 M |x|n where M = N
n!

.

7. 4.4 Problem 7

– solution 1
Let g(h) = f(x0 + h)− 2f(x0) + f(x0 − h), then
g′(h) = f ′(x0 + h)− f ′(x0 − h)
g′′(h) = f ′′(x0 + h) + f ′′(x0 − h)
g(0) = 0, g′(0) = 0
By theorem 4.24, or Lagrange Remainder Theorem,
for each h there is a z = z(h) ∈ (0, h) such that

g(h) = g′′(z)
2!

h2

⇒ f(x0 + h)− 2f(x0) + f(x0 − h) = g(h) = g′′(z)
2!

h2

⇒ limh→0
f(x0+h)−2f(x0)+f(x0−h)

h2 = limh→0
g′′(z)

2
= limh→0

f ′′(x0+z)+f ′′(x0−z)
2

= f ′′(x0)
The last equality is true because z(h) → 0 as h → 0.

– solution 2
Since limh→0 f(x0 + h)− 2f(x0) + f(x0 − h) = 0 and
limh→0 h2 = 0,
by L’hopital’s rule,
limh→0

f(x0+h)−2f(x0)+f(x0−h)
h2 = limh→0

f ′(x0+h)−f ′(x0−h)
2h

again we have, limh→0 f ′(x0 + h)− f ′(x0 − h) = 0 and
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limh→0 2h = 0
By L’hopital’s rule
⇒ limh→0

f ′(x0+h)−f ′(x0−h)
2h

= limh→0
f ′′(x0+h)+f ′′(x0−h)

2
= f ′′(x0)

⇒ limh→0
f(x0+h)−2f(x0)+f(x0−h)

h2 = f ′′(x0)

8. 8.1 Problem 2

a. f(x) =
∫ x

0
1

1+t2
dt

f ′(x) = 1
1+x2

f ′′(x) = −2x
(1+x2)2

f ′′′(x) = −2
(1+x2)2

+ 8x
(1+x2)3

p3(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3

= x− 2

3!
x3

= x− 1

3
x3

b. f(x) = sin x
f ′(x) = cos x
f ′′(x) = − sin x
f ′′′(x) = − cos x

p3(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3

= x− 1

3!
x3

= x− 1

6
x3

c. f(x) = sin x + x200

f ′(x) = cos x + 200x199

f ′′(x) = − sin x + (200)(199)x198

f ′′′(x) = − cos x + (200)(199)(198)x197

p3(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3

= x− 1

3!
x3

= x− 1

6
x3

d. f(x) =
√

2− x
f ′(x) = −1

2(2−x)
1
2

f ′′(x) = − 1

4(2−x)
3
2
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f ′′′(x) = − 3

8(2−x)
5
2

p3(x) = f(1) +
f ′(1)

1!
(x− 1) +

f ′′(1)

2!
(x− 1)2 +

f ′′′(1)

3!
(x− 1)3

= 1− 1

2
(x− 1)− 1

2!
· 1

4
(x− 1)2 − 1

3!
· 3

8
(x− 1)3

= 1− 1

2
(x− 1)− 1

8
(x− 1)2 − 1

16
(x− 1)3

9. 8.1 Problem 4
Since p3(x) = f(0) + f ′(0)

1!
x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3

we know that f(0) = 1, f ′(0) = 4, f ′′(0) = −2
Since f has three derivatives, ⇒ f , f ′, and f ′′ are continuous.
∃δ1 > 0, δ2 > 0, and δ3 > 0 such that
|f(x)− f(0)| < 1

2
for |x| < δ1

|f ′(x)− f ′(0)| < 1
2

for |x| < δ2

|f ′′(x)− f ′′(0)| < 1
2

for |x| < δ3

⇒ for |x| < δ = min{δ1, δ2, δ3}
f(x) > f(0)− 1

2
= 1

2
> 0

f ′(x) > f ′(0)− 1
2

= 4− 1
2

> 0
f ′′(x) < f ′′(0) + 1

2
= −2 + 1

2
< 0

Hence f is positive for |x| < δ,
f ′ > 0 for |x| < δ, which implies f is strictly increasing for |x| < δ
f ′′ < 0 for |x| < δ, which implies f ′ is strictly decreasing for |x| < δ.

10. 8.2 Problem 2
f(x) = (1 + x)

1
3

f ′(x) = 1
3
(1 + x)−

2
3

f ′′(x) = −2
9

(1 + x)−
5
3

f ′′′(x) = 10
27

(1 + x)−
8
3

By the Lagrange remainder theorem, for each x > 0 there exists cx ∈ (0, x) such that

f(x) = f(0) + f ′(0)x + f ′′(cx)
2!

x2

f ′′(cx)
2!

x2 = −1
9
(1 + cx)

5
3 x2 < 0 for each x > 0

⇒ f(x) < f(0) + f ′(0)x = 1 + 1
3

Again by the Lagrange remainder theorem, for each x > 0 there exists dx ∈ (0, x) such
that
f(x) = f(0) + f ′(0) + f ′′(0)

2!
x2 + f ′′′(dx)

3!
x3

f ′′′(dx)
3!

x3 = 5
81

(1 + dx)
− 8

3 x3 > 0 for each x > 0

⇒ f(x) > f(0) + f ′(0)x + f ′′(0)
2!

x2 = 1 + x
3
− x2

9

⇒ 1 + x
3
− x2

9
< (1 + x)

1
3 < 1 + x

3
for x > 0

11. 8.2 Problem 8
(=⇒)
Suppose that x0 is a root of order k of the polynomial p
then p(x) = (x− x0)

kr(x), where r(x0) 6= 0
Differentiating directly,
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p′(x) = k(x− x0)
k−1r(x) + (x− x0)

kr′(x)
p′′(x) = k(k − 1)(x− x0)

k−2r(x) + 2k(x− x0)
k−1r′(x) + (x− x0)

kr′′(x)
...
p(k−1)(x) =

∑k−1
i=0

(k−1)!
(k−1−i)!i!

(
(x− x0)

k
)(k−1−i)

r(i)(x)

p(k)(x) =
∑k

i=0
(k)!

(k−i)!i!

(
(x− x0)

k
)(k−i)

r(i)(x) =
∑k

i=0(
k!

(k−i)!i!
)(k!

i!
)(x− x0)

ir(i)(x)

for p(x), p′(x), to p(k−1)(x), all the terms are multiples of (x− x0),
so p(x0) = p′(x0) = · · · = p(k−1)(x0) = 0
for p(k)(x), all terms except the term k!r(x) are multiples of (x− x0).
So p(k)(x0) = k!r(x0) 6= 0.

(⇐=)
Suppose p(x) is a polynomial of degree n.
Then the nth Taylor polynomial for p at x0 is p itself.

p(x) =
∑n

l=0
p(l)(x)

l!
(x− x0)

l

Since p(x0) = p′(x0) = · · · = p(k−1)(x0) = 0,

p(x) =
∑n

l=k
p(l)(x)

l!
(x− x0)

l = (x− x0)
k
∑n−k

l=0
p(l+k)(x)
(l+k)!

(x− x0)
l

let r(x) =
∑n−k

l=0
p(l+k)(x)
(l+k)!

(x− x0)
l

then we know that r(x0) = p(k)(x0) 6= 0
Therefore we have p(x) = (x− x0)

kr(x), where r(x0) 6= 0
So x0 is a root of p with order k.

12. 8.2 Problem 11

a. Since f (n+1)(x) is continuous and f (n+1)(x0) > 0,
there exists δ > 0 such that f (n+1)(x) > 0 for x in |x0 − x| < δ.
By the Lagrange remainder theorem, for each x 6= with |x− x0| < δ there is a cx

strictly between x0 and x satisfying

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)
n!

(x− x0)
n + f (n+1)(cx)

(n+1)!
(x− x0)

n+1

Since f (k)(x) = 0 for 1 6 k 6 n,

f(x) = f(x0) + f (n+1)(cx)
(n+1)!

(x− x0)
n+1

For |x− x0| < δ, we have |x0 − cx| < |x0 − x| < δ, so we have f (n+1)(cx) > 0,
also n + 1 is even gives (x− x0)

n+1 > 0

⇒ f (n+1)(cx)
(n+1)!

(x− x0)
n+1 > 0

⇒ f(x) = f(x0) + f (n+1)(cx)
(n+1)!

(x− x0)
n+1 > f(x0) ⇒ x0 is a local minimizer.

b. Since f (n+1)(x) is continuous and f (n+1)(x0) < 0,
there exists δ > 0 such that f (n+1)(x) < 0 for x in |x0 − x| < δ.
By the Lagrange remainder theorem, for each x 6= 0 there is a cx strictly between
x0 and x satisfying

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)
n!

(x− x0)
n + f (n+1)(cx)

(n+1)!
(x− x0)

n+1

Since f (k)(x) = 0 for 1 6 k 6 n,

f(x) = f(x0) + f (n+1)(cx)
(n+1)!

(x− x0)
n+1

For |x− x0| < δ, we have |x0 − cx| < |x0 − x| < δ, so we have f (n+1)(cx) < 0,
also n + 1 is even gives (x− x0)

n+1 > 0

⇒ f (n+1)(cx)
(n+1)!

(x− x0)
n+1 < 0
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⇒ f(x) = f(x0) + f (n+1)(cx)
(n+1)!

(x− x0)
n+1 < f(x0) ⇒ x0 is a local maximizer.

c. Suppose f (n+1)(x0) > 0,
since f (n+1)(x) is continuous,
there exists δ > 0 such that f (n+1)(x) > 0 for x in |x0 − x| < δ.
By the Lagrange remainder theorem, for each x 6= 0 there is a cx strictly between
x0 and x satisfying

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)
n!

(x− x0)
n + f (n+1)(cx)

(n+1)!
(x− x0)

n+1

Since f (k)(x) = 0 for 1 6 k 6 n,

f(x) = f(x0) + f (n+1)(cx)
(n+1)!

(x− x0)
n+1

For |x− x0| < δ, we have |x0 − cx| < |x0 − x| < δ, so we have f (n+1)(cx) > 0
Since n + 1 is odd, for x > x0,

f(x) = f(x0) + f (n+1)(cx)
(n+1)!

(x− x0)
n+1 > f(x0)

for x < x0,

f(x) = f(x0) + f (n+1)(cx)
(n+1)!

(x− x0)
n+1 < f(x0)

⇒ x0 is not local minimizer nor a local maximizer.
The case where f (n+1)(x0) < 0 is similar.

13. 8.2 Problem 12

a. By the Lagrange remainder theorem, for each x 6= 0, there exists ch strictly be-
tween x0 and x0 + h, such that
f(x0 + h) = f(x0) + f ′(x0)h + f ′′(ch)

2!
h2

Since f ′′′(x) > 0, f ′′(x) is strictly increasing and is one-to-one, so ch is unique.
let θ(h) = ch−x0

h
, clearly, 0 < θ(h) < 1, and

f(x0 + h) = f(x0) + f ′(x0)h + f ′′(x0+θ(h)h)
2!

h2

b. By the Lagrange remainder theorem, for each h 6= 0 there exists dh strictly
between x0 and x0 + h such that
f(x0 + h) = f(x0) + f ′(x0)h + f ′′(x0)

2!
h2 + f ′′′(dh)

3!
h3,

So with the equation from (a.), we have
f ′′(x0+θ(h)h)

2!
h2 = f ′′(x0)

2!
h2 + f ′′′(dh)

3!
h3

Since h 6= 0

⇒
f ′′(x0+θ(h)h)

2!
− f ′′(x0)

2!

h
= f ′′′(dh)

3!

⇒ limh→0

(
θ(h)f ′′(x0+θ(h)h)−f ′′(x0)

θ(h)h

)
= limh→0

f ′′′(dh)
3

= f ′′′(x0)
3

> 0

⇒
(
limh→0 θ(h)

)(
limh→0

f ′′(x0+θ(h)h)−f ′′(x0)
θ(h)h

)
=

(
limh→0 θ(h)

)
f ′′′(x0) = f ′′′(x0)

3
>

0
⇒ limh→0 θ(h) = 1

3

14. 8.3 Problem 1

a. f(x) = sin x
f ′(x) = cos x
...
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|f (n)(x)| 6 1 for all n, and all x
By theorem 8.14,

sin x =
∑∞

k=0
(−1)(k)

(2k+1)!
x2k+1

So we know that for every x, the Taylor series converges.

b. f(x) = cos x
f ′(x) = − sin x
...

|f (n)(x)| 6 1 for all n, and all x
By theorem 8.14,

cos x =
∑∞

k=0
(−1)(k+1)

(2k)!
(x− π)2k

So we know that for every x, the Taylor series converges.
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