HW 8.

1. 4.3 Problem 1

a. False.
Let f(z) = 23, f(x) is strictly increasing, but f'(0) =0

b. True.
Since f is nondecreasing, we have f(z) < f(y) if z < y.
So—f(”m)>0forall$ o €R

By Lemma 2.21, lim, 4, %ﬁéxo) >0

f'(x¢) = 0 for all points z( in R

c. True.
Since f(0) > f(z) for all x € [-1,1],
%g(o) <Oforx >0

So lim$_>0 =10

(”“") f >0forac<0

So hmz_@ (; g(o) =0

Since derivative exists, both limits are equal.
£1(0) = lim, o {9=10 — ¢

d. False
Let f(z) =

f(1) = f()forallaze[ 1,1]
but f(1) =1%#0

2. 4.3 Problem 4
f(x)=322—-3=3(2*-1)<0for0<z <1
= f(z)> f(y) forall0 <z <y <1
If f(x) has two solutions in (0,1), then we would have f(z) = f(y) = 0 for some
0 < x <y < 1, which contradicts the previous statement.

3. 4.3 Problem 7
You can use Rolle’s Theorem as follows.
fl(x)=na"1+a
f"(z) =n(n —1)z"2 > 0 for all x € R since n is even = [ is strictly increasing.
If f has three or more zeros,
Jda, b, ¢ such that f(a) = f(b) = f(c) =
Then by Rolle’s Theorem 3z € ( ,b) and y € (b, c)
such that f'(z) =0 and f'(y) =
But f’ cannot have two distinct zeros since f’ is strictly increasing.
Therefore, f has at most two zeros.

If n is odd, there could be one or three solutions depending on the values of a, b.

If @ > 0, then f'(z) > 0 for all z, f(z) is strictly increasing. So f(x) has exactly one
solution in this case.

If a =0, then f(x) = 2™ + b is strictly increasing. f(z) has only one solution.

If a < 0 then f(x) is increasing in the intervals (—oo, —(%“)ﬁ) and ((=2 )nll 00),
decreasing in the interval (—(%’)ﬁ7 (‘T“)ﬁ)

So depending on b, f(z) can have one or three solutions.
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4. 4.3 Problem 11
Suppose the contrary. (Suppose f has n + 1 or more solutions)
Then da; < as < --- < a,41 such that

flar) = flaz) = = f(any1) =0

Then by Rolle’s theorem, there exists x1,zg, -+, x,

such that ¢y <71 <ay <y <az3<---<a, <z, <z, and
f’(ﬁl) = f’(@) == fl(xn) =0,

but this contradicts to the fact that f’ has at most n — 1 zeros.
So f can have at most n solutions (zeros).

5. 4.4 Problem 3

a. f'(t) =2t, g(t) = 3¢°
F-F0) _ 1=

9(1)—g(0) — 1-0

'@ _ 2 _ 2
g'(c) — 32 3¢
so if ¢ = %,We have

f)—f0) _ f'(c)
g(1)—g(0) g'(c)

b. If f(1) = f(0) = f'(¢)(1 = 0), then f'(c) =1, = c=3
If g(l)'— g(0) = ¢'(0)(1 — 0), then ¢'(c ) =1, =c= \/Lg

6. 4.4 Problem 5
By Theorem 4.24, and the condition f(0) = f/(0) = --- = f™=Y(0) = 0
for any x # 0, there is a point z strictly between x and 0 such that
_ M@ an
flz) = —=(2)
Since f™ is bounded, 3N such that | (z)| < N for all z € (—1,1)

£ (@)] = L2 ()" < M|z|" where M = X
7. 4.4 Problem 7

— solution 1
Let g(h) = f(xo+ h) — 2f(xo) + f(xo — h), then
g'(h) = f'(xo + h) = f'(zo — h)
g"(h) = f"(xo + h) + f"(zo — )
9(0) =0, ¢'(0) =0
By theorem 4.24, or Lagrange Remainder Theorem,
for each h there is a z = z(h) € (0, h) such that
glh) = S0
= f(xo+h) = 2f(x0) + f(zo — h) = g(h) =

= limy,_.¢ f@oth)— ing‘ro”f(mo h) _ = limy,_o Z 2( ) = hmh_@

The last equality is true because z(h) — 0 as h — 0.

f (10+2)J2rf (xo—2) _ f”(xo)

— solution 2
Since hmh_,o f(ﬂ?o + h) — 2f(330) + f(flfo — h) =0 and
hmhﬂo h2 = O,
by L’hopital’s rule,
limy,_.o f(roJrh)*?f(gon(wO*h) = limy, .o

h
again we have, lim,_o f'(zo + h) — f'(zo — h) = 0 and

f'(xo+h)—f"(zo—h)




hmh_,o 2h =0

By L’hopitz}l’s rule / ) )
= limy, o LS w0h) _ pipy, o S eodh)f womh) gy )

2h
= hthO f(zo+h)— Qf(wo)-i-f zo—h) _ f"( )

8. 8.1 Problem 2

a f() = Jy vt
f (I‘) - 1+x2
_ _—2
f'(@) = e
f///(l‘) = (1+_$2)2 + (EEE

1! 2! 3!
2
= r — _fL‘S
3!
L 3
== 3%
b. f(x) =sinz
f'(x) =cosz
f"(x) = —sinx
f"(x) = —cosz

1! 2! 3!
1
= r — _xg
3!
1 3
=T — 6.1'

c. f(x)=sinz+ 2%
f'(z) = cos x + 20021
(@) = —sina + (200)(199)z1%
f"(x) = — cosz + (200)(199)(198) 7

o) = £0) + Ty T2 T
1
:x—gx?’
:x—éx?’

oy — =1
fi) = 2(2-2)2

" 1
/(@) 4(2-2)2



9.

10.

11.

f”/(I) — _ 3

Nl

8(2—x)
po(@) =50 + TP+ L0 @ 1y LD
1 11 , 13 s
:1—5(1‘—1)—?'4(1’— )l—g'g(l’—l)
1 3
=1 §($—1)—§($—1) —1—6(:U—1)

8.1 Problem 4

Since ps(z) = f(0) + fl(') + f”(O) 2 + f’”( )

we know that f(0) =1, f/(0 )—4 f”( ):

Since f has three derivatives, = f, f’, and f” are continuous.

401 > 0, 45 > 0, and d3 > 0 such that

7(2) — £(0)] < & for [a] <&

|f'(x) = f(0)] < 3 for |z] < b

77(@) — £(0)] <} for |a] < o

= for |z| < § = min{dy, do, 03}

f@)> f(0) =} =1 >0

) > () —L =11 >0

(@) < f"(0)+5=-2+3<0

Hence f is positive for |z| < 0,

f' >0 for |z| < ¢, which implies f is strictly increasing for |z| < §
f" <0 for |z| < 0, which implies f’ is strictly decreasing for |z| < J.

8.2 Problem 2
fa)=(ta)i
£(@) = 31 +)°3
(x) = 0 +0)°S
f"(x) = (1 +2)7s

By the Lagrange remainder theorem, for each x > 0 there exists ¢, €

F(@) = f(0) + f/(0)a + Lifea 2
f élcx)ﬁ =—:(1+ ¢p)322 < 0 for each > 0

= f(2) < fO) + f(0)z =1+

Again by the Lagrange remainder theorem, for each z > 0 there exists d, € (0, x) such

that 111

F) = J(0) + 11(0) + L4002 1 s
f?flclz)w3:g%(1+dx) 3g? >0f0reachx>0
= f(x) > f(0) + f(0)x + L0z =142 - &

:>1—|—§—%2<(1—|—x)§<1—|—§f0rx>0

8.2 Problem 8

(=)

Suppose that zq is a root of order k of the polynomial p
then p(z) = (x — x¢)*r(z), where r(zg) # 0
Differentiating directly,

(z —

1)?

(0, z) such that



(@) = k(z = 20)""'r(x) + (x — x0)*r'(x)
p'(x) = k(k = 1)(z — 20)*?r(z) + 2k(z — 20)" 1" (2) + (z — 20)"r" (x)

-1 (k—1)! (k=1—=4)
z) =2 ﬁ(@ — 20)") r(z)

)
Ba) = S g (@ = 20)") *rO (@) = S (ki) (5) @ = w0)'r ()

for p(z), p'(x), to p(k 1)( ), all the terms are multiples of (z — ),
s0 p(wg) = p'(w0) = -+ = p*V(w) =0
for p®®)(z), all terms except the term k!r(x) are multiples of (z — x).

So p¥)(z¢) = klr (o) # 0.

(=)

Suppose p(x) is a polynomial of degree n.

Then the nth Taylor polynomial for p at xq is p itself.

p(x) = zlof“}.( — )’

Since p(xg) = p (a:o) o= pU () = 0,
) (z n—k ptk) (g
plx) =330, " u( (z —@0)' = (z — @0)* 3o p(Tk&)@ — )
n—k p(+k) (g
let r(z) = prk(( o)
then we know that 7(zo) = p™ (z0) # 0
k

Therefore we have p(z) = (:L' — x0)"r(z), where r(zg) # 0
So xg is a root of p with order k.

12. 8.2 Problem 11

a. Since ("1 (z) is continuous and f+(zy) > 0,
there exists § > 0 such that f**V(z) > 0 for x in |z — x| < 4.
By the Lagrange remainder theorem, for each x # with |x — x| < 0 there is a ¢,
strictly between zy and x satisfying )
nt1) (¢,

f(@) = o) + F(@o) (@ — mo) + -+ + L0 (2 — ) L) (4 — )
Since f®)(z) =0 for 1 < k < n,

f(@) = flwo) + Lot (2 — )t

For |z — x¢| < d, we have |xg — ¢,| < |19 — 2| < 6, so we have f("*V(c,) >0,
also n + 1 is even gives (x — z)" ™ > 0

(n+1) (¢, .
= f(nﬂ()! )(a:—xo) >0

= f(z) = f(xg) + %(I — xo)" ™ > f(x9) = ¢ is a local minimizer.

b. Since f™+Y(z) is continuous and f"*+Y(z4) < 0,
there exists § > 0 such that f"*(z) < 0 for x in |z — x| < 4.
By the Lagrange remainder theorem, for each x # 0 there is a ¢, strictly between
xo and z satisfying
(") (2 (n+1) (¢,
fx) = flao) + f/(xo) (@ — wo) + -+ + L5 (0 — o)™ + L el ( — o)
Since f®(z) =0 for 1 < k < n,
(n+1) Ca n
f(x) = f(zo) + d (n+1()1 )(x — ) 1
For |z — x| < 4, we have |zg — ¢,| < |z — | < 6§, so we have f("(c,) < 0,
also n + 1 is even gives (z — xg)" ™ > 0

(n+1) Cx mn
’ (n+1()! Mz - )"t <0




= f(z) = f(xo) + f(z%a()cﬁ)(:c — x9)" ™ < f(xg) = m0 is a local maximizer.

Suppose f™)(z4) > 0,
since f("*Y(z) is continuous,
there exists § > 0 such that f**(z) > 0 for x in |z — x| < 4.
By the Lagrange remainder theorem, for each x # 0 there is a ¢, strictly between
xo and x satisfying
™) (g (n+1) "

F(&) = F(ao) + F/(z0)(@ — o) + - + L) (g — g L00e) (g gyt
Since f®)(z) =0 for 1 < k < n,

(nt+1) Cx n
f(x) = f(zo) + ! (n+1()1 )(l’ — o) 1
For |z — zo| < d, we have |zg — ¢;| < |zo — 2| < 6, so we have f("*)(c,) > 0
Since n + 1 is odd, for x > x,

(n+1) Co n
f(x) = flxo) + f(Tl()!)(f — )" > f(ao)
for x < xg,

(1) (¢, n
fl@) = flwo) +1 (n+1()| Yo — o)™ < f(x0)
= x( is not local minimizer nor a local maximizer.
The case where f("*V(z4) < 0 is similar.

13. 8.2 Problem 12

a.

By the Lagrange remainder theorem, for each x # 0, there exists ¢, strictly be-
tween xy and o + h, such that .

Fxo+h) = flao) + f'(zo)h + Lirdp?

Since f"”(x) > 0, f”(x) is strictly increasing and is one-to-one, so ¢, is unique.
let O(h) = %570, clearly, 0 < 6(h) < 1, and

f(zo+h) = f(ffo) + f'(xo)h + w;ﬂ

By the Lagrange remainder theorem, for each h # 0 there exists dj strictly
between zy and x¢ + h such tha1,:l .
f@o+h) = flwo) + f(xo)h + L5eln? 4+ Lol s,
So with the equation from (a.), we have
" x 6 17 x "
f(0+ (Wh) g2 fé!o)h2—|—f§!dh)h3

SIDCS h #0 .

N f (10;9( ;h) ! éTO) _ fm?E!dh)

— Timy, .o (Q(h) f”(mo—i—Gé?})L;L})L—f”(xo) = limy, .o f/”:(;i h) _ f”/(wo) >0

= (limy o 0(h)) (limy, o ST E0) ) — (hm,ﬁoe( ) [ () = Lz

= limy_,o G(h) = %

14. 8.3 Problem 1

a.

x) =sinx
(x) = cosz

f
f/



|f™(x)] <1 for all n, and all &
By theorem 8.14,

oo (=D® opy
sinw =) 7o i ®

So we know that for every x, the Taylor series converges.

. f(x) =cosz
fl(x) = —sinx

| £ (z)| < 1 for all n, and all x

By theorem 8.14,
00 —1)(k+1)
COST =) 7 , %(m — )%k

So we know that for every x, the Taylor series converges.



