HW 10

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Show that if $L(f, P) \leqslant A \leqslant U(f, P)$ for all partitions P of $[a, b]$. Then, $A \in[\bar{L}(f), \underline{U}(f)]$.

$$
\begin{aligned}
A \leqslant U(f, P) & \Rightarrow A \leqslant \inf _{P} U(f, P)=\underline{U}(f) \\
A \geqslant L(f, P) & \Rightarrow A \geqslant \sup _{P} L(f, P)=\bar{L}(f) \\
A & \in[\bar{L}(f), \underline{U}(f)]
\end{aligned}
$$

2. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Prove that f is Riemann integrable iff there exists a sequence of partitions that is Archimedean for f.
(\Longrightarrow)
f is Riemann integrable $\Rightarrow \bar{L}(f)=\underline{U}(f)$
$\bar{L}(f)=\sup \{L(f, P): P$ is a partition over $[a, b]\}$
$\Rightarrow \exists$ partition P_{1}^{n} of $[a, b]$ such that $L\left(f, P_{1}^{n}\right)>\bar{L}(f)-\frac{1}{n}$
$\underline{U}(f)=\inf \{L(f, P): P$ is a partition over $[a, b]\}$
$\Rightarrow \exists$ partition P_{2}^{n} of $[a, b]$ such that $L\left(f, P_{2}^{n}\right)<\underline{U}(f)+\frac{1}{n}$
Let P^{n} be a common refinement of P_{1}^{n} and P_{2}^{n}
Then $L\left(f, P_{1}^{n}\right) \leqslant L\left(f, P^{n}\right) \leqslant U\left(f, P^{n}\right) \leqslant U\left(f, P_{2}^{n}\right)$
$U\left(f, P^{n}\right)-L\left(f, P^{n}\right) \leqslant U\left(f, P_{2}^{n}\right)-L\left(f, P_{1}^{n}\right)<\underline{U}(f)+\frac{1}{n}-\bar{L}(f)+\frac{1}{n}=\frac{2}{n}$
Therefore, we can find a sequence of partitions $\left\{P^{n}\right\}$ such that
$\lim _{n \rightarrow \infty}\left\{U\left(f, P^{n}\right)-L\left(f, P^{n}\right)\right\}=0$
$\left\{P^{n}\right\}$ is Archimedean.
(\Longleftarrow)
Suppose there is an Archimedean sequence of partitions $\left\{P^{n}\right\}$
$\lim _{n \rightarrow \infty}\left\{U\left(f, P^{n}\right)-L\left(f, P^{n}\right)\right\}=0$
By the definition of inf and sup
$0<\underline{U}(f)-\bar{L}(f) \leqslant U\left(f, P^{n}\right)-L\left(f, P^{n}\right)$ for all n.
Since $U\left(f, P^{n}\right)-L\left(f, P^{n}\right)$ can be arbitrarily small, $\underline{U}(f)=\bar{L}(f) \Rightarrow f$ is Riemann integrable.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow$ be integrable over $[a, b]$. Let $\alpha, \beta \in \mathbb{R}$. Then $\alpha f+\beta g$ is also integrable over $[a, b]$ and $\int_{a}^{b}(\alpha f+\beta g)=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g$.
First show that $\alpha \int_{a}^{b} f=\int_{a}^{b} \alpha f$
f Riemann integrable $\xlongequal{\text { by }(2)} \exists P^{n}$ such that
$\lim _{n \rightarrow \infty} U\left(f, P^{n}\right)-L\left(f, P^{n}\right)=0$
By the definition of $U(f, P)$ and $L(f, P)$, we can observe that
$U(\alpha f, P)=\alpha U(f, P)$ and $L(\alpha f, P)=\alpha L(\alpha f, P)$ for $\alpha \geqslant 0$
$U(\alpha f, P)=\alpha L(f, P)$ and $L(\alpha f, P)=\alpha U(\alpha f, P)$ for $\alpha<0$
In either case we have
$\lim _{n \rightarrow \infty} U\left(\alpha f, P^{n}\right)-L\left(\alpha f, P^{n}\right)=0$
moreover, $\bar{L}(\alpha f)=\underline{U}(\alpha)=\alpha \underline{U}(f)=\alpha \bar{L}(f)$
So $\alpha \int_{a}^{b} f=\int_{a}^{b} \alpha f$.

Then we prove that $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$
There exists an Archimedean sequence of partitions $\left\{P_{f}^{n}\right\}$ for f
There exists an Archimedean sequence of partitions $\left\{P_{g}^{n}\right\}$ for g
Let $\left\{P^{n}\right\}$ be a common refinement of $\left\{P_{f}^{n}\right\}$ and $\left\{P_{g}^{n}\right\}$
Then $\left\{P^{n}\right\}$ is an Archimedean sequence of partitions for f and g.
$\lim _{n \rightarrow \infty}\left\{U\left(f, P^{n}\right)-L\left(f, P^{n}\right)\right\}=0$
$\lim _{n \rightarrow \infty}\left\{U\left(g, P^{n}\right)-L\left(g, P^{n}\right)\right\}=0$
For all n,
$L\left(f, P^{n}\right)+L\left(g, P^{n}\right) \leqslant L\left(f+g, P^{n}\right) \leqslant U\left(f+g, P^{n}\right) \leqslant U\left(f, P^{n}\right)+U\left(g, P^{n}\right)$
Taking the limit on all terms, since both ends are equal, we get
$\lim _{n \rightarrow \infty} L\left(f, P^{n}\right)+\lim _{n \rightarrow \infty} L\left(g, P^{n}\right)=\lim _{n \rightarrow \infty} L\left(f+g, P^{n}\right)=\lim _{n \rightarrow \infty} U\left(f+g, P^{n}\right)=$ $\lim _{n \rightarrow \infty} U\left(f, P^{n}\right)+\lim _{n \rightarrow \infty} U\left(g, P^{n}\right)$
So $\left\{P^{n}\right\}$ is Archimedean for $f+g$, and by problem 2 we know that ($\mathrm{f}+\mathrm{g}$) is integrable.
Moreover, by the above equality, $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$

Combining both parts, we get linearity
$\int_{a}^{b}(\alpha f+\beta g)=\int_{a}^{b} \alpha f+\int_{a}^{b} \beta g=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g$
4. Let $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable over $[a, b]$. Moreover, suppose $f(x) \leqslant g(x) \quad \forall x \in[a, b]$, then $\int_{a}^{b} f \leqslant \int_{a}^{b} g$.

Since $f(x)-g(x) \geqslant 0$
$\int_{a}^{b}(f-g) \geqslant L(f-g, P) \geqslant 0$ where P is any partition over $[a, b]$
By linearity, $\int_{a}^{b} f-\int_{a}^{b} g=\int_{a}^{b}(f-g)$
$\Rightarrow \int_{a}^{b} f-\int_{a}^{b} g \geqslant 0$
$\Rightarrow \int_{a}^{b} f \geqslant \int_{a}^{b} g$

