$\rm HW~10$

1. Let $f : [a, b] \to \mathbb{R}$ be bounded. Show that if $L(f, P) \leq A \leq U(f, P)$ for all partitions P of [a, b]. Then, $A \in [\overline{L}(f), \underline{U}(f)]$.

$$A \leqslant U(f, P) \Rightarrow A \leqslant \inf_{P} U(f, P) = \underline{U}(f)$$
$$A \geqslant L(f, P) \Rightarrow A \geqslant \sup_{P} L(f, P) = \overline{L}(f)$$
$$A \in [\overline{L}(f), U(f)]$$

2. Let $f : [a, b] \to \mathbb{R}$ be bounded. Prove that f is Riemann integrable iff there exists a sequence of partitions that is Archimedean for f.

 (\Longrightarrow) f is Riemann integrable $\Rightarrow \overline{L}(f) = \underline{U}(f)$ $\overline{L}(f) = \sup\{L(f, P) : P \text{ is a partition over } [a, b]\}$ $\Rightarrow \exists \text{ partition } P_1^n \text{ of } [a,b] \text{ such that } L(f,P_1^n) > \overline{L}(f) - \frac{1}{n}$ $\underline{U}(f) = \inf\{L(f, P) : P \text{ is a partition over } [a, b]\}$ $\Rightarrow \exists \text{ partition } P_2^n \text{ of } [a, b] \text{ such that } L(f, P_2^n) < \underline{U}(f) + \frac{1}{n}$ Let P^n be a common refinement of P_1^n and P_2^n Then $L(f, P_1^n) \leq L(f, P^n) \leq U(f, P^n) \leq U(f, P_2^n)$ $U(f, P^n) - L(f, P^n) \leq U(f, P_2^n) - L(f, P_1^n) < \underline{U}(f) + \frac{1}{n} - \overline{L}(f) + \frac{1}{n} = \frac{2}{n}$ Therefore, we can find a sequence of partitions $\{P^n\}$ such that $\lim_{n \to \infty} \{ U(f, P^n) - L(f, P^n) \} = 0$ $\{P^n\}$ is Archimedean. (⇐=) Suppose there is an Archimedean sequence of partitions $\{P^n\}$ $\lim_{n \to \infty} \{ U(f, P^n) - L(f, P^n) \} = 0$ By the definition of inf and sup $0 < \underline{U}(f) - L(f) \leq U(f, P^n) - L(f, P^n)$ for all n. Since $U(f, P^n) - L(f, P^n)$ can be arbitrarily small, $U(f) = \overline{L}(f) \Rightarrow f$ is Riemann integrable.

3. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to$ be integrable over [a, b]. Let $\alpha, \beta \in \mathbb{R}$. Then $\alpha f + \beta g$ is also integrable over [a, b] and $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$.

First show that $\alpha \int_a^b f = \int_a^b \alpha f$ f Riemann integrable $\stackrel{by(2)}{\Longrightarrow} \exists P^n$ such that $\lim_{n\to\infty} U(f,P^n) - L(f,P^n) = 0$ By the definition of U(f,P) and L(f,P), we can observe that $U(\alpha f,P) = \alpha U(f,P)$ and $L(\alpha f,P) = \alpha L(\alpha f,P)$ for $\alpha \ge 0$ $U(\alpha f,P) = \alpha L(f,P)$ and $L(\alpha f,P) = \alpha U(\alpha f,P)$ for $\alpha < 0$ In either case we have $\lim_{n\to\infty} U(\alpha f,P^n) - L(\alpha f,P^n) = 0$ moreover, $\overline{L}(\alpha f) = \underline{U}(\alpha) = \alpha \underline{U}(f) = \alpha \overline{L}(f)$ So $\alpha \int_a^b f = \int_a^b \alpha f$. Then we prove that $\int_a^b (f+g) = \int_a^b f + \int_a^b g$ There exists an Archimedean sequence of partitions $\{P_f^n\}$ for fThere exists an Archimedean sequence of partitions $\{P_g^n\}$ for gLet $\{P^n\}$ be a common refinement of $\{P_f^n\}$ and $\{P_g^n\}$ Then $\{P^n\}$ is an Archimedean sequence of partitions for f and g. $\lim_{n\to\infty} \{U(f,P^n) - L(f,P^n)\} = 0$ $\lim_{n\to\infty} \{U(g,P^n) - L(g,P^n)\} = 0$ For all n, $L(f,P^n) + L(g,P^n) \leq L(f+g,P^n) \leq U(f+g,P^n) \leq U(f,P^n) + U(g,P^n)$ Taking the limit on all terms, since both ends are equal, we get $\lim_{n\to\infty} L(f,P^n) + \lim_{n\to\infty} L(g,P^n) = \lim_{n\to\infty} L(f+g,P^n) = \lim_{n\to\infty} U(f,P^n) + \lim_{n\to\infty} U(g,P^n)$ So $\{P^n\}$ is Archimedean for f+g, and by problem 2 we know that (f+g) is integrable. Moreover, by the above equality, $\int_a^b (f+g) = \int_a^b f + \int_a^b g$

Combining both parts, we get linearity $\int_{a}^{b} (\alpha f + \beta g) = \int_{a}^{b} \alpha f + \int_{a}^{b} \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$

4. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be Riemann integrable over [a, b]. Moreover, suppose $f(x) \leq g(x) \quad \forall x \in [a, b]$, then $\int_a^b f \leq \int_a^b g$.

Since $f(x) - g(x) \ge 0$ $\int_{a}^{b} (f - g) \ge L(f - g, P) \ge 0$ where P is any partition over [a, b]By linearity, $\int_{a}^{b} f - \int_{a}^{b} g = \int_{a}^{b} (f - g)$ $\Rightarrow \int_{a}^{b} f - \int_{a}^{b} g \ge 0$ $\Rightarrow \int_{a}^{b} f \ge \int_{a}^{b} g$