HW 11

1. Prove that sets of measure zero contain no intervals.
A has measure zero $\Rightarrow \inf \left\{\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right): A \subset \cup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)\right\}=0$ where inf is taken over all collections of countable number of intervals which their union contains A.
Suppose there is some interval $(c, d) \subset A$
Then for any collection of intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{\infty}$ containing A,
$\cup_{i=1}^{\infty}\left(a_{i}, b_{i}\right) \supset A \supset(c, d)$
$\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right) \geqslant(d-c)>0$ for all collection of intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{\infty}$ containing A,
then measure of A would be greater than or equal to $d-c>0$ which is a contradiction to A has measure zero.
Therefore A contains no open interval, but this also implies that A cannot contain any interval.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable and nonnegative, with f positive over $(c, d) \subset[a, b]$. Then $\int_{a}^{b} f d x>0$.
By the Lebesgue theorem, f must be continuous almost everywhere (discontinuous at a set of measure zero).
Since by the previous problem, sets of measure zero contain no intervals,
$\exists p \in(c, d)$ such that f is continuous at p.
We have $f(p)>0$.
By continuity of $f, \exists \delta, 0<\delta<\min \{b-p, p-a\}$, such that if $|x-p| \leqslant \delta$, then $|f(x)-f(p)|<\frac{f(p)}{2}$,
which implies that if $|x-p| \leqslant \delta$, then $f(x)>\frac{f(p)}{2}$
$\int_{p-\delta}^{p+\delta} f \geqslant \int_{p-\delta}^{p+\delta} \frac{f(p)}{2}=\delta f(p)>0$ where we use the monotonicity property of the integral. Since $f(x) \geqslant 0$ for all $x \in[a, b]$, again by monotonicity property, $\int_{a}^{p-\delta} f \geqslant 0$ and $\int_{p+\delta}^{b} f \geqslant 0$
combining the three parts,
$\int_{a}^{b} f=\int_{a}^{p-\delta} f+\int_{p-\delta}^{p+\delta} f+\int_{p+\delta}^{b} f \geqslant \delta f(p)>0$
3. Let $G:[a, b] \rightarrow \mathbb{R}$ be nondecreasing and continuous over $[a, b]$ and differentiable over (a, b). Suppose g is an extension of G^{\prime} to $[a, b]$ that is Riemann integrable. Let $f:[G(a), G(b)] \rightarrow \mathbb{R}$ be Riemann integrable and have a primitive F, where F : $[G(a), G(b)] \rightarrow \mathbb{R}$ is continuous over $[G(a), G(b)]$ and differentiable over $(G(a), G(b))$. Then

$$
\int_{G(a)}^{G(b)} f(y) d y=\int_{a}^{b} f(G(x)) g(x) d x
$$

Let $P=\left[p_{0}, \cdots, p_{l}\right]$ be the partition of $[G(a), G(b)]$ associated with the primitive F.
Let $Q=\left[q_{0}, \cdots, q_{m}\right]$ be the partition of $[a, b]$ associated with the primitive G.
Since G is not strictly increasing, the inverse of G may not be well defined.
Still, we can choose any of the points that maps to p_{1}, \cdots, p_{l-1} to be $G^{-1}\left(p_{1}\right), \cdots, G^{-1}\left(p_{l-1}\right)$, and let $G^{-1}\left(p_{0}\right)=a$ and $G^{-1}\left(p_{l}\right)=b$.
Then since G is nondecreasing, $G^{-1}\left(p_{0}\right) \leqslant G^{-1}\left(p_{1}\right) \leqslant \cdots \leqslant G^{-1}\left(p_{l}\right)$.
Let $G^{-1}(P)=\left[G^{-1}\left(p_{0}\right), \cdots, G^{-1}\left(p_{l}\right)\right]$ and $R=Q \vee G^{-1}(P)=\left[r_{0}, \cdots, r_{n}\right]$.
Then we have that $F(G)$ is differentiable over $\left(r_{i-1}, r_{i}\right)(i=1, \cdots, n)$.

By the Chain Rule we have
$F(G)^{\prime}(x)=F^{\prime}(G(x)) G^{\prime}(x)=f(G(x)) g(x)$ for every $x \in\left(r_{i-1}, r_{i}\right)$
So $F(G)$ is a primitive of $f(G) g$ over $[a, b]$
The rest of the proof is the same as the increasing case. (Proposition 3.1 in the notes).
4. Find an example such that $\int_{G(a)}^{G(b)} f(y) d y=\int_{a}^{b} f(G(x)) g(x) d x$ fails.

Let

$$
f(x)= \begin{cases}x & \text { for } \quad x \geqslant 0 \\ 0 & \text { for } \quad x<0\end{cases}
$$

and $G(x)=x^{2}$ then $g(x)=2 x$
Let $a=-1$ and $b=1$
$\int_{G(a)}^{G(b)} f(y) d y=\int_{1}^{1} f(x) d x=0 \neq \frac{1}{2}=\int_{0}^{1} 2 x^{3} d x+\int_{-1}^{0} 0 d x=\int_{a}^{b} f(G(x)) g(x) d x$

