
MATH858T Maria Cameron

Homework 1. Due Sept. 9

1. Ref. [1], Chapter 2, Problem 3 (page 25)

2. Ref. [1], Chapter 2, Problem 7 (page 26). The declaration on the top is written
in C. It says that x, y, z, w are floating point numbers (in single precision) and
oneThird and oneHalf are 1/3 and 1/2 calculated in the floating point arithmetic.
Assume that x, y, z, w are normal numbers and their exponents are greater than
emin. Then division by 2 is exact.

3. Ref. [1], Chapter 2, Problem 8 (page 26). Do (a) only in double precision. Do not
do plots suggested in (b) and (c). Instead, make a three column print out

n, f̂0 � f0, p̂0 � p0

for 3  n  100 (note that f̂0 � f0 and p̂0 � p0 are functions of n) and answer all the
questions in (b) and (c) including the extra credit.

References

[1] Bindel and Goodman, Principles of scientific computing

1



HW2

Bindel and Goodman

 (Links to an external site.)

Principles of Scientific Computing

Chapter 4, pages 98 - 99, exercises 1, 2, 4, 8


HW3

Bindel and Goodman

 (Links to an external site.)

Principles of Scientific Computing,

Chapter 4, pages 100 - 102

Exercises:     10 (5 points);    11(a,b,c,d,f) (10 points);     12 (10 points)


HW4

Bindel and Goodman, "Principles of Scientific Computing"

 (Links to an external site.)

Chapter 5. Pages 123 - 124.

Exercises: 1, 2, 3




AMSC660 Maria Cameron

Homework 5. Due Oct. 7

1. Consider the overdetermined system of linear equations Ax = b where A is m ⇥ n,

m � n, full rank. Let x

⇤
be the least squares solution of Ax = b, i.e.,

x

⇤
= arg min

x2Rn
||Ax� b||22.

(a) Let A = QR be the QR decomposition of A. Express x

⇤
in terms of R, Q and

b.

(b) Let A = U⌃V

⇤
be the singular value decomposition of A. Express x

⇤
in terms

of U , ⌃, V and b. Hint: Use Demmel’s definition of the SVD where U is m⇥ n

and ⌃ and V are n⇥ n.

2. Consider the underdetermined system of linear equations Ax = b where A is m⇥ n,

m  n, full rank. Show that the minimum norm solution

x

⇤
= arg min

{x : Ax=b}
||x||22

is given by

x

⇤
= A

⇤
(AA

⇤
)

�1
b.

3. Let f(x), x 2 R, f : R ! R be a smooth function. Assume that the sequence of

iterates {x
k

} produced by the secant method converges to a solution x

⇤
of f(x) = 0

and f

0
(x

⇤
) 6= 0. Show that the rate of convergence of the secant method is p =

(1 +

p
5)/2.

4. The goal of this exercise is to understand how the hybrid method works.

(a) Use the hybrid method to find the initial displacement ✓0 of the pendulum

oscillating according to the equation

¨

✓ + 0.98 sin ✓ = 0, ✓(0) = ✓0,
˙

✓(0) = 0,

such that the period of oscillations is equal to 10. At each iteration, make your

code print the iteration number, the current approximation to the solution, and

the deviation of the current period from 10. Submit the printout produced of

your routine. Hint: you might find useful the routines bisection.m where this
problem is solved using the bisection method, and hybrid.m where the hybrid
method is used for solving �1 + 0.1/x = 0.
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(b) Read any popular article about the Van der Pol oscillator, e.g. the one in

Wikipedia:

ẋ = y,

ẏ = µ(1� x

2
)y � x.

Use the hybrid method to find the value of parameter µ such that the maximal

value of y = ẋ in the stable limit cycle is 4. Hint: y reaches its maximal value
when ẏ = µ(1 � x

2
)y � x = 0 and ẏ change its sign from + to �. Therefore,

you can set value = µ(1� x

2
)y � x and direction = �1 in events. At each

iteration, make your code print the iteration number, the current approximation

to the solution, and the deviation of the current value of value of µ from 4.

Submit a print-out of your code and the printout produced by your program.

References

[1] G.W. Stewart, ”Afternotes on numerical analysis”. Lecture 5 describes the hybrid

method.

[2] J. Demmel, ”Applied Numerical Linear Algebra”. Contains detailed descriptions of

QR and SVD.
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AMSC660 Maria Cameron

Homework 6. Due Oct. 14

1. To compute
p
2 we consider the following Eudoxos iterations: starting with x0 =

y0 = 1 we set xn+1 = xn + yn followed by yn+1 = xn+1 + xn. Then yn/xn �!
p
2.

(a) Explain how does the Eudoxos method work.

(b) How many iterations are required for an error |yn/xn �
p
2|  10�6?

Hint. Write the iterative procedure in the matrix form

✓
xn+1

yn+1

◆
= A

✓
xn
yn

◆
.

Find eigenvalues {�1,�2} and eigenvectors {v1, v2} of A. Then write the initial data
(x0, y0)T = av1 + bv2. Show that |yn/xn �

p
2| < Cqn. Find q. Estimate the number

of iterations that are necessary to achieve the required accuracy.

2. Download the Matlab program broyden.m from the class web site. It solves the
equation

Tf 00 � |f 0|2rV (x, y) + (rV (x, y) · f 0)f 0 = 0,

where f(t) = (x(t), y(t)) is a curve subjected to the boundary conditions (x(0), y(0)) =
(xa, ya), (x(1), y(1)) = (xb, yb), T is a given parameter, and V (x, y) is a given func-
tion. Therefore, the dimensionality of the discretized problem is 2(n� 2), where n is
the number of points that represent the curve.

(a) For T = 1, 0.7 and 0.5 run it using a segment of a straight line as the initial
guess (type [x,y]=broyden(T,0,0,0) in the command window). (The residual
might not decay for T = 0.5. ) Plot the residual versus the iteration number
using log scale for the y-axis. Do you observe a superlinear convergence?

(b) i. resetting the approximate Jacobian J1 to identity every m iterations for
m = 5, 10, 20.

ii. making steepest descent step (i.e., the step direction is �r(x) where r(x) = 0
is the equation to be solved) instead of Broyden’s step whenever the line
search fails.

Report your findings. Plot the residual versus the iteration number using log
scale for the y-axis for each case.

(c) You should see that it is easy to obtain the solution for T = 1, while it gets
harder as T decreases. Use the simple continuation method where you use
the found curve at a given T0 as an initial guess for T1 < T0 (to do it, type
[x,y]=broyden(T1,1,x,y) in the command window). Obtain a solution for
T = 0.01 starting from a segment of straight line as the initial guess at T = 1
and solving the equation for a sequence of T ending at T = 0.01 using the
outcome of each run as an initial guess for the next value of T . What sequence
of values of T did you use?
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3. (Approx. problem 11.12 from Nocedal & Wright) Consider

H(x;�) = �(x2 � 1) + (1� �)(x� 0.5).

(a) Show that there is a zero path for H(x,�) connecting the points (x = 0.5,� = 0)
and (x = 1,� = 1).

(b) Plot the zero path.

4. Consider the function

H(x;�) = x3 � �x2 + �2x� 1� � cos�.

If � = 0, then the root of H(x; 0) is easy to find. Program the zero-path following
method and use it to find the solution H(x; 10) = 0. Start your zero path at the
point where � = 0. Submit the printout of your program. Make your program plot
the zero path. Submit the plot. Report the solution of H(x; 10) = 0 found by your
program.

References

[1] J. Nocedal and S. Wright, ”Numerical Optimization”, Chapter 11.
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AMSC660 Maria Cameron

Homework 7. Due Oct. 21

1. (Approx. problems 2.9 and 2.10 from Nocedal and Wright) The SR1 and BFGS are
quasi-Newton methods with the following update rules for the approximate Jacobian:

s
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= x

k+1 � x

k
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k

= rf

k+1 �rf

k

, p

k
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k

rf
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,
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The goal of this problem is to show that the Newton method and these quasi-Newton
methods are scale-invariant.

(a) Suppose that f̃(z) = f(x), where x = Sz + s for some S 2 Rn⇥n and s 2 Rn.
Show that

rf̃(z) = S

Trf(x), rrf̃(z) = S

Trrf(x)S.

Hint: Use the chain rule to express @f̃

@zj
in terms of @f

@xi
for all i, j = 1, . . . , n.

(b) Show that the Newton update, the SR1 update, and the BFGS update are
scale-invariant (if B0 is chosen appropriately)i.e show that if these methods are
applied to f(x) starting from x0 = Sz0 + s (with initial Hessian B0 for SR1and
BFGS), and to f̃(z) starting from z0 (with initial Hessian S

T

B0S for SR1 and
BFGS), then all iterates are related by x

k

= Sz

k

+ s. Assume unit step lengths
for simplicity.

2. (Problem 3.7 from Nocedal and Wright.) Derive the following relationship for the
steepest descent method, applied to f(x) = 1

2x
T

Qx � b

T

x, where Q is symmetric
positive definite:

kx
k+1 � x

⇤k2
Q

=

⇢
1�

(rf

T

k

rf

k

)2

(rf

T

k

Q

�1rf

k

)(rf

T

k

Qrf

k

)

�
kx

k

� x

⇤k2
Q

.

3. (Approx. problem 3.1 from Nocedal and Wright) (a) Compute the gradient and the
Hessian of the Rosenbrock function

f(x, y) = 100(y � x

2)2 + (1� x)2. (1)

Show that (1, 1) is the only local minimizer, and that the Hessian is positive definite
at this point.
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(b) Program the steepest descent, Newton, SR1 and BFGS algorithms using the
backtracking line search (see Chapter 3 from Nocedal and Wrigth). Use them to
minimize the Rosenbrock function (1). First start with the initial guess (1.2, 1.2) and
then with the more di�cult one (�1.2, 1). Set the initial step length ↵0 = 1 and plot
the step length ↵

k

versus k for each of the methods.

Plot the level sets of the Rosenbrock function using the command contour and plot
the iterations for each methods over it.

Plot k(x
k

, y

k

) � (x⇤, y⇤)k versus k in the logarithmic scale along the y-axis for each
method. Do you observe a superlunar convergence? Compare the performance of the
methods.
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AMSC660 Maria Cameron

Homework 8. Due Oct. 28

1. 5 pts Read the Wiki article about the Lennard-Jones potential. Consider 7 atoms
in 3D interacting according to the Lennard-Jones pair potential. The total energy is
given by

V = 4 7�
i=2

i−1�
j=1(r

−12
ij − r−6ij ), where rij =�(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

We will distinguish only those atomic configurations that are not possible to map one
into the other by translations, rotations and permutations of atoms. This system has
4 distinct in this sense local minima shown in figure below.

Pentagonal bipyramid: V = - 16.50538417 

Bicapped trigonal bipyramid: !
V = - 15.53306005!

 

Capped octahedron: !
V = - 15.93504306 

Tricapped tetrahedron: !
V = - 15.59321094 

Matlab program LJ7findmin.m implements the line search Newton method. The
initial approximations for each local minimum are defined so that all edges have the
length 21�6, the minimizer of the Lennard-Jones pair potential. Rotations and trans-
lations are eliminated by fixing atom 1 at the origin, allowing atom 2 to move only
along thee x-axis, and allowing atom 3 to move only in the xy-plane. The gradient is
calculated using analytic formulas. The Hessian for the Newton method is calculated
using finite di↵erences (because the analytic formulas for the Hessian are too much
trouble to calculate,). Whenever Newton’s method gives and non-descend direction,
the steepest descend direction is used instead. Note that Newton’s method converges
to two out of those four minima: pentagonal bipyramid and capped octahedron, while
fails to converge to the other two local minima: instead, it converges to saddle points
with energy values -15.31986444 and -15.28342128. This is an instance of erratic
behavior of Newton’s method.
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(a) Randomly perturb the initial approximations using Gaussian random variables
with mean zero and (i) variance �

2 = 0.01 and (ii) �2 = 0.05. (Note, you need
to perturb only x but not xyz.) Run the Newton method. Report, whether
convergence will happen. If so, does the iterations converge to a minimum or
to saddle? If to minimum, name the minimum. Note that the atoms might fly
far apart. Then the value of the potential is almost 0. Write a summary of the
results.

(b) Try to find the 4 local minima starting from the unperturbed initial approxi-
mations using the BFGS and SR1 line search methods. Whenever the proposed
direction is not a descend direction, replace it with the steepest descend direc-
tion, and replace B with identity. Verify that the algorithms converge to the
right local minima. If necessary, play with parameters of the algorithm. Print
out your modified code. Write a report summarizing your observations and
comparing the performances of Newton’s, BFGS, and SR1 methods.

2. 5 pts (Approx. problem 4.9 from Nocedal and Wright) Derive the solution of the
two-dimensional constrained minimization problem

min m(p) = f + gT p + 1

2
p

T
Bp, p ∈ R2

, subjected to p

T
p ≤�2

in the case where B is positive definite.

3. 10 pts (Approx. problem 4.2 from Nocedal and Wright) Write a program that
implements the trust-region strategy with the dogleg method. Choose Bk to be
the(i) BFGS and (ii) SR1 approximations to the Hessian. Apply it to the Rosenbrock
function

f(x, y) = 100(y − x2)2 + (1 − x)2
starting with (−1.2,1). Repeat with the initial point (0,1). Print out and submit
your code. Plot graphs of �∇fk� versus k in the logarithmic scale along the y-axis.
Write a report summarizing your observations.
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AMSC660 Maria Cameron

Homework 9. Due Nov. 4

1. 5 pts

(a) Show that Fletcher-Reeves nonlinear CG method with exact line searches

�FR
k+1 = ∇fT

k+1∇fk+1∇fT
k ∇fk , pk+1 = −∇fk+1 + �FR

k+1pk

all generated directions are descend directions.

(b) Verify that the coe�cients � for Polak-Ribiere and for Fletcher-Reeves nonlinear
CG methods,

�PR
k+1 = ∇fT

k+1(∇fk+1 −∇fk)�∇fk�2 and �FR
k+1 = ∇fT

k+1∇fk+1∇fT
k ∇fk ,

are identical in the case where f(x) is a strongly convex quadratic function.

2. 10 pts Compare the performances of Polak-Ribiere and Fletcher-Reeves nonlinear
conjugate gradient methods (PRCG and FRCG) on the problem of finding local
minima of the system of 7 atoms in 3D interacting according to the Lennard-Jones
pair potential. The total energy of the system is given by

V = 4 7�
i=2

i−1�
j=1(r

−12
ij − r−6ij ), where rij =�(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

For brevity, this system is denoted by LJ7. Use PRCG+ (�k+1 = max{0,�PR
k+1}) and

FRCG to search for local minima of LJ7 starting from random initial configurations.
Proceed as follows. Generate 10 random initial configurations. For each of them, run
both, RPCG+ and FRCG. Check whether each of them converges, i.e., �∇Vn� → 0.
If both converge, check whether they converge to the same stationary point. Record
the numbers of iterations and the numbers of V and ∇V evaluations (”fevals”) for
each of these methods. Make a table with the computed data and write a conclusion
where you compare performances of these methods.

Supplementary materials:

• The matlab file LJ7_NonlinCG_random_initial_conf.m contains a code for
generating random initial configurations, a function [f, df] = LJ(xyz) eval-
uating V and ∇V , a function drawconf(xyz) for visualizing atomic configura-
tions, and templates for the CG methods.
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• Minima of LJ7: m1 : V = −16.5053841680; m2: V = −15.9350430605; m3:
V = −15.5932109382, and m4: V = −15.5330600546. If you obtain another value
of the potential V at the stationary point, this means that this point is a saddle.

3. 10 pts

Strain’s Lecture 02, page 7, Exercise 4.

(a) Check that the solution of the 2D gravity ODE with the initial conditions x0 = 1,
y0 = 0, u0 = 0, v0 = 1 lies on the unit circle in the xy-plane, and the time of one
revolution is 2⇡.

(b) Write a program for the 2D gravity problem and perform tests described in
Exercise 4. However, instead of the forward Euler method and the 2nd order
Taylor method, implement the following methods:

• Forward Euler: un+1 = uu + hf(tn, un), error O(h);
• Trapezoidal rule with Euler predictor, error O(h2):

u∗ = un + hf(tn, un), un+1 = un + h

2
(f(tn, un) + f(tn+1, u∗));

• Midpoint rule with Euler predictor, error O(h2)
u∗ = un + h

2
f(tn, un), un+1 = un + hf(tn + h

2 , u
∗);

• The 4-stage 4th order Runge-Kutta method (a.k.a. the classic Runge-Kutta,
or RK4) (e.g. see Strain’s Lecture 06, page 1), error O(h4);

• The 3rd order 3-step Adams-Bashforth method, error O(h3):
un+1 = un + h�23

12
f(tn, un) − 4

3
f(tn−1, un−1) + 5

12
f(tn−2, un−2)� .

(c) For the last two methods: Pick the time step h = 0.01⇡ and estimate the time
interval T and the number of revolutions such that the numerical solution by
each of these methods deviates from the unit circle by at least 0.1. Or do these
methods produce numerical solutions always staying near the unit circle?
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AMSC660 Maria Cameron

Homework 10. Due Nov. 11

1. (Approx. Strain’s Lecture 3, exercises 4 and 5) The general form of linear explicit
2-step methods is

un+1 = a0un + a1un−1 + h(b0fn + b1fn−1).
(a) Find the coe�cients a0, a1, b0, and b1 that maximize the consistency order of

this method. What is this order?

(b) Show that the resulting method is unstable. To do so, apply it to the IVP y

′ = 0
with initial condition y(0) = c. Set u0 = c and u1 = c + ✏. Derive the formula
for un. Show that the numerical solution u at a fixed final time T > 0 blows up
as we refine the time step h, i.e., �u� → ∞ as h = T �n → 0 for any fixed ✏ > 0.
Hint: If you missed the Lecture on Nov. 2, look up how to solve linear discrete
recurrence relations anywhere in the internet.

(c) Apply this method to the 2D gravity problem with the initial condition x(0) =
v(0) = 1, y(0) = u(0) = 0, and show that the numerical solution blows up.

2. Strain’s Lecture 4, page 4, exercise 1.

3. Strain’s Lecture 4, page 6, exercise 3.

4. An explicit 3-stage 3rd-order Runge-Kutta method (a. k. a. the Kutta method) is
given by

k1 = f(tn, un),
k2 = f(tn + 1

2h,un + h
2k1),

k3 = f(tn + h,un − hk1 + 2hk2),
un+1 = un + h �16k1 + 2

3k2 + 1
6k3� .

Consider the application of this method to the linear ODE y

′ = �y, y ∈ C. Let h

be the time step. Then the numerical solution un can be written in the form of the
recurrence relationship as

un+1 = R(h�)un.
The function R(z) ≡ R(h�) is called the stability function. The region of absolute
stability or RAS is defined as a region on the z ∶= h� complex plane (h is the time
step), where un → 0 as n→∞, i.e.,

RAS ∶= {z ∈ C � �R(z)� < 1} .
(a) Find the stability function for this method.

1



(b) Explain the relation between the stability function and the Taylor expansion for
the exponent. Hint: You can start reasoning as follows: the exact solution of
y

′ = �y, y(tn) = yn, is y(tn + h) = yne�h. Then

yn+1 ≡ y(tn + h) = yne�h = yn(1 + �h + 1
2(�h)2 + . . .)

Now look compare it with the recurrence relation for the numerical solution and
think about its order of consistency.

(c) Hypothesize what the stability function for any explicit p-stage pth-order Runge-
Kutta method is.

2



AMSC 660 Homework Assignment 11. Due Friday, Nov. 20 (sharp!)
Fall 2015

1. Test the ODE solvers available in MATLAB on the Van Der Pol oscillator

y

0
1 = y2,

y

0
2 = µ((1� y

2
1)y2)� y1.

with µ = 102, 104, and 106. Set error tolerances ✏ ⌘ atol ⌘ rtol, ✏ = 10�3, 10�6, and
10�9. Compute solution for one cycle. Plot the two solution components versus time
t and plot y2 versus y1. Measure the CPU time required to compute one cycle for
each of the solvers for each of the values of µ and plot log ✏ versus log(CPUtime).

Please submit :

• Three figures, one for each µ, with the plots of log ✏ versus log(CPUtime) for
each of the solvers. Make sure to sign, which graph is for which solver.

• Report of your observations. Conclude, which solver is the most e�cient for each
µ and each ✏. What can you say about the order of the methods implemented
in the MATLAB ODE solvers? Are they constant or variable?

2. Construct embedded Runge-Kutta methods: (a) RK1(2) where the second order
method is Runge-trapezoidal, (b) RK3(2) where the 3-rd order method is Kutta’s
method (see Table 1), (c) RK3(2) where the 3-rd order method is Heun’s method
(see Table 2). Determine which of these methods have the FSAL property (fist same
as last).

3. Go to http://www.unige.ch/⇠hairer/software.html and download DOPRI5. You
can download the original fortran versions, of c versions, or MATLAB versions, what-
ever you prefer. (The Matlab versions are found in ”There is a folder with Matlab
codes, written by Denis Bichsel ”dbichsel (at) infomaniak.ch”, for the nonsti↵ inte-
grators DOPRI5 and DOP853.”) Go through the code and determine

(a) What is the relationship between the vectors b and b̂ of the Butcher array in
Table 3 and the coe�cients a and er in the code?

(b) Is un+1 or ûn+1 is used for the next time step? Is un+1 or ûn+1 is as the output?

(c) Explain how the error estimation is done in DOPRI5?

(d) How is the step size chosen in DOPRI5? What is the formula and what are the
values of parameters in it?

(e) Plot the Region of Absolute Stability for DOPRI5 (the coe�cients regimen in
Table 3).



4. The Brusselator is a model for a type of autocatalityc reaction (look it up in the
Wikipedia):

y

0
1 = 1 + y

2
1y2 � 4y1,

y

0
2 = 3y1 � y

2
1y2.

Find appropriate initial conditions for the periodic solution. Compare CPU times for
computing the solution for one period with tolerances abstol = reltol = 1e� 3, 1e�
6, 1e� 9, 1e� 12 by

• ode23 (Bogacki – Shampine method of the type RK3(2), 4 stages, look it up in
the Wikipedia),

• ode45,

• dop54 (should be the same as ode45, but minor details in the code might di↵er,
and

• dop853.

The last two are the matlab codes for DOPRI5 and DOP853 from
http://www.unige.ch/⇠hairer/software.html. Submit a table with tolerances,
CPU times and methods, a figure showing the solution in the phase plane, and a
summary of your observations.

5. (a) Derive the interpolation polynomial v(✓), ✓ 2 [0, 1] for the data u0 = y(tn),
f0 = y

0(tn), u1/2 = y(tn + h/2), u1 = y(tn + h), and f1 = y

0(tn + h).

(b) Compare your result with the formula for the continuous output used in DOPRI5.
Explain how u1/2 is evaluated in the code.
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Table 1: Kutta’s method

0
1
3

1
3

2
3 0 2

3

1
4 0 3

4

Table 2: Heun’s method

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 �56

15
32
9

8
9

19372
6561 �25360

2187
64448
6561 �212

729

1 9017
3168 �355

33
46732
5247

49
176 � 5103

18656

1 35
384 0 500

1113
125
192 �2187

6784
11
84

y1
35
384 0 500

1113
125
192 �2187

6784
11
84 0

ŷ1
5179
57600 0 7571

16695
393
640 � 92097

339200
187
2100

1
40

Table 3: Embedded Runge-Kutta Method: Dormand and Prince 5(4).



AMSC 660 Homework Assignment 12. Due Wed., Dec. 2 Fall 2015

1. Plot the region of absolute stability for each of the methods given in the tables on
page 5 of Strain’s lecture 12. Compare your results with those on pp. 10-12 of
Strain’s lecture 13. You can use the matlab script ras.m written by J. Strain. Write
a summary of your observations. For each of the three families of methods, Implicit
Adams (a.k.a Adams-Moulton), explicit Adams (a.k.a. Adams-Bashforth), and BDF
determine the range of orders for which you find their stability properfies satisfactory.
Determine which BDF methods are A(↵) stable and estimate ↵ for them.

2. (a) Derive a three-step implicit Adams method with variable step size, i.e., assume
hn = tn+1 � tn, hn�1 = tn � tn�1 and hn�2 = tn�1 � tn�2 are di↵erent. In your
answer, you can leave coe�cients in the form of integrals and divided di↵erences.

(b) Now set all step sizes to be equal to h. Evaluate the divided di↵erences, per-
form integrations and compare your result with the three-step Adams-Mouton
method.

3. Prove that the 2-step variable step size BDF method (Strain’s lecture 11, page 5) is
stable i↵ !n ⌘ hn/hn�1 < 1 +

p
2.

4. (a) The 2d⇥ 2d matrix

J =


0 I
�I 0

�

is called symplectic. Find J�1 and J2.

(b) A linear map A : R2d ! R2d is called symplectic if for all x, y 2 R2d the 2-form

!(x, y) := xTJy is conserved, i.e., !(Ax,Ay) = !(x, y). (1)

Show that Eq. (1) is equivalent to

ATJA = J. (2)

The geometric interpretation of the 2-form is explained in [1].

(c) The Stoermer-Verlet method for integration of Hamiltonian systems of the form

dp

dt
= �rqH(p, q),

dq

dt
= rpH(p, q) or, equivalently,

d

dt


p
q

�
= J�1rH(p, q)

is given by

pn+1/2 = pn � h

2
rqH(pn+1/2, qn), (3)

qn+1 = qn +
h

2

�
rpH(pn+1/2, qn) +rpH(pn+1/2, qn+1)

�
, (4)

pn+1 = pn+1/2 �
h

2
rqH(pn+1/2, qn+1). (5)



Rewrite this scheme for the case of a separable Hamiltonian, i.e., a Hamiltonian
of the form H(p, q) = T (p) + U(q). Show that it is an explicit scheme in this
case. This scheme is also known as velocity Verlet. Apply the obtained scheme
to the simple harmonic oscillator in 1D with the Hamiltonian

H(p, q) =
p2

2m
+

m!2q2

2
. (6)

Rewrite the resulting equations in the form

pn+1

qn+1

�
= A


pn
qn

�
,

where A is a 2⇥ 2 matrix that you need to find.

(d) Show that the linear map given by the found matrix A is symplectic, i.e.,
ATJA = J .

(e) The velocity Verlet scheme does not conserve the Hamiltonian given by Eq. (6).
Prove that it conserves the so called shadow Hamiltonian given by

H⇤ =
p2

2m
+

1

2
m!2q2

 
1�

✓
!h

2

◆2
!
. (7)

This problem was inspired by [3], see slides 16 - 24.

5. Write the Hamiltonian equations for the 1D mathematical pendulum whose Hamil-
tonian is given by

H(p, q) =
1

2
p2 � cos(q).

Use the Stoermer-Verlet method to integrate the Hamiltonian equations and demon-
strate that the oriented phase area is preserved by the method. In order to do it,
evolve some shape in time (for example, you can use the cats face cat.txt as it is
done in symplectic_demo.m, or you can create your own shape). Experiment with
placing your shape around di↵erent initial points in the plane (p, q). Make figures
similar to Fig. 1 in [2] (middle, right).
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