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Density Estimation with Transport Maps

Aim: estimate the unknown probability density function p. € 2(Q) from sample data {x;}’_,

o

&

» Take a simple base density p, € D (L) (e.g9. Gaussian) and;
» Build a (reversible) map T : € — € such that the pushforward of p, by T is p-:

Ttp, = p»

Well-suited for generative modeling and sampling:

Allows for likelihood estimation, etc. : p(x) = p (T~ (x)) det[ VT (x)]

it x, ~p, then x=T(x) ~ p«

Song et al., ICLR (2021)

.... DALL-E (Open Al)



Density Estimation with Transport Maps

4 N

» Take a simple base density p, € (L) (e.g. Gaussian) and;

» Build a (reversible) map T : Q — Q such that the pushforward of p, by Tis p:  T#p, = p«
\—

Link with transportation theory (without the need for optimality) - Monge, Ampére, Kantorovich, Brenier, Villani, ...

How to estimate the map 1 in a computationally tractable way?

Build 7" as the composition of simpler maps estimated sequentially via max entropy method.

Chen & Gopinath, NeurlPS 13 (2000);
Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010);
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164 (2013).

Approximate T by a neural net and use invertible neural architectures giving T,

Dinh et al. arXiv:1410.8516 (2014);
Rezende et al., arXiv:1505.05770 (2015);
Papamakarios et al. arXiv:1912.02762 (2019); ...

NICE: Dinh et al. arXiv:1410.8516 (2014);
Real NVP: Dinh et al. arXiv:1605.08803 (2016)

View T as solution of a continuous-time flow with a velocity approximated by a neural net.

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)



Continuous Time Flow

Set T = X,_; where X, = flow map associated with a time-dependent velocity field v,(x):

% t(X) — Vt(Xz(x)) XO(X) =X

5
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Continuous Time Flow

Set T = X,_; where X, = flow map associated with a time-dependent velocity field v,(x):
d .
EXt(x) = (X (x)) Xo(x) = x Lagrangian frame

Equivalently:

If p(x) solves 0,p,+V - (vtp,) =0, p_o=p, then p,_,; = p«=rtarget PDF

Eulerian frame

» Solution by method of characteristics: given initial p,_o(x) = p,(x), we have

5
Pz(Xz(x)) — pb(x)exp< — J V. VS(XS(X))dS> V¢ Pointwise evaluation of pt(x);
0 Calculation of cross-entropy; ...

» Benamou-Brenier theory guarantees that v,(x) exists such that p,_;(x) = p«(x)

How do we get the right v,(x) ?



Maximum Entropy Formulation

Basic idea

- Use the Kullback-Leibler divergence of p« to p,_, as objective;

_ Notice that unknown IQ log p«(x)p«(x)dx is a constant that plays no role.

Groposition: Consider the optimization problem B
. Px(x)
min | log px(x)dx = —max | logp,_(x)p:«(x)dx + C
v Jg Pr=1(X) v Jo
subject to: 0,p,=—V - (vtpt), Pi=0 = Pp
Qhen all optimizers v,(x) are such that p,_; = px. y

Eulerian = Lagrangian



Maximum Entropy Formulation

G’roposition: Consider the minimization problem

1
min[ [[ V - v X, (0)dt — log p(X,_(x) | p(x)dx
v Jg SJo

d _ _ _
subject to: e () = v(X,(x)), X =x

Then all minimizers v,(x) are such that X! fip, = p- e x,~p, > X))~ pe.

_ Y,

Tractable in principle:
- Objective and its gradient can be evaluated empirically using samples from px ;

- Velocity v,(x) can be approximated by deep neural network (DNN);
- Constrained optimization can be performed by SGD + adjoint method (= neural ODE framework)

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)



Maximum Entropy Formulation

Groposition: Consider the minimization problem h
1 — —
min [ ” V - v(X,(x))dt — log pb(XtZO(x))] p«(x)dx
v Jo HJo
. d _ _ _

subject to: o () = v(X,(x)), X_=x

Then all minimizers v,(x) are such that X! fip, = p- e x,~p, > X))~ pe.
\_ J

Training is costly as it requires many passes through ODE solver.

Optimization is only weakly constrained — many vt(x) do the job, most are unnecessarily complicated.

Can we separate the task of building a path from p, to p. from that of learning v,(x) ?



Song et al. arXiv:.2011.13456 (2021);
Hyvérinen JMLR 6 (2005);

SCOre— Based DIﬁUSIOﬂ MOdels Vincent, Neural Comp. 23, 1661 (2011)

Given data from the target p.:

- Devolve it into the Gaussian base p,, using e.g. an Ornstein-Ulhenbeck process;
Time-reverse the SDE to generate new samples from p. from samples from p,;

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

score function

[f( & log ps (x

Reverse SDE (noise — data)

—]

dt + g(t)dw

From Song’s blog on SBDM

Builds a connection = path in density space between p, and p



Score-

5ased

Diffusion Models

» Data from p,(x) easy to generate:

» Reverse SDE needs the Fischer score Vlog p,(x)

add noise to data from p.(x).

Song et al. arXiv:2011.13456 (2021),

Hyvérinen JMLR 6 (2005);
Vincent, Neural Comp. 23, 1661

Forward SDE (data — noise)

x(0) dx = f(x,t)dt + g(t)dw

(2011)

"&,

score function

dx = [f(x,t) — ¢° (¢)Vx log p: (x)|| dt + g(t)dw

Reverse SDE (noise — data)

» Learn score via minimization of Fisher divergence: Given p,(x), we have:

a

\—

5,(x)

= argmin

s(x)

= argmin

s(x)

0y

| 5(x) — Vlog p,(x) | p,(x)dx
Q

J

| ( | s(x) |2 + 2V - s(x)) px)dx
Q

Tractable in practice:
- Objective and its gradient can be evaluated empirically by sampling p;;

- Score s,(x) can be approximated by deep neural network (DNN);
- Minimization can be performed by direct SGD (nho adjoint needed).

)
)




Song et al. arXiv:.2011.13456 (2021);

: : Hyvérinen JMLR 6 (2005);
SCOre‘ Based DIﬁUSIOﬂ MOdels Vincent, Neural Comp. 23, 1661 (2011)
Forward SDE (data — noise)
» Data from p,(x) easy to generate: @ das = £, )dé-H g h)dvr >@
add noise to data from p(x). .ﬁ ﬁg

» Reverse SDE needs the Fischer score Vlog p,(x) ~ scorefunction
@ dx = [f(x,t) — ¢° (¢)Vx log p: (x)|| dt + g(t)dw

Reverse SDE (noise — data)

Requires taking T > 1 and limits choice of base density p, since lim p, = p, = N(0,1).

— 00

Gives reversed SDE and probability flow ODE —the latter is needed for likelihood calculation.

Can we avoid the SDE, work on t € [0,1] with arbitrary p, and p.,
build a connection between them, and get the velocity v(x) directly?




Building Flows with Stochastic Interpolants

with Michael Albergo

Define the interpolant density p, as the PDF of the stochastic interpolant:

Xy = t(xb, X*) with Xp ~ Ppy X ™~ P,

where [(x,, x:) is differentiable and satisfies 1,_q(xy, x+) = x,,  L_1(x, Xx) = Xu.

For example: X, = cos(%m)xb + sin(%m)x*

Builds a path p,

between any p,, and p-
that is easy to sample.




Building Flows with Stochastic Interpolants

with Michael Albergo

Stochastic interpolant : x, = L(x,, x:) With X, ~ pp, X« ~ ps, and I_g(x,, x+) = x5, L_1(xp, Xs) = X

4 )

Proposition: \We have
0,0+ V-j, =0, Pi=0 = Pp>  Pi=1 = P+
with the current j(x) defined by: for all test functions ¢ : Q - R

[ Vp(x) - j(x)dx = J 0,1(xp, x+) - V(L (xg, X1))pp(X3) (X )d X, d X
Q QXQ

- J
Consequence of chain rule: plx)=E, ,[6(x—1)] Jx)=E, ,[01,6(x—1)] .

Define v(x) = VU,/(x) where the time-dependent potential U,(x) solves the Poisson equation
2 (ptVUt) =V ji==0p,

Use variational formulation of this equation to get a tractable objective



Building Flows with Stochastic Interpolants

with Michael Albergo

Proposition: The PDF p,(x) of x, satisfies A
0o+ V-p)=0,  po=pp Pr=1 =P
with a velocity v(x) = V U/(x) with U/(x) the unique minimizer of
2
Eo v ( VUL, 5)) |2 = 20,10t x2) - VU, x*))>
Xb ~ Pb
X ™~ P J

i

Albergo & V.-E. arXiv:2209.15571 (2022);
s Liu et al. arXiv:2209.030083 (2022);
Lipman et al. arXiv:2210.02747 (2022)
ey
Pb

ox) =x

Space



Building Flows with Stochastic Interpolants

with Michael Albergo

‘p

roposition: The PDF p,(x) of x, satisfies A

0,p+V-p)=0,  po=pp Pr=1 =P

with a velocity v,(x) = V U/(x) with U/(x) the unique minimizer of

Eo v ( VUL, 5)) |2 = 20,10t x2) - VU, x*)))
Xb ~ Pb

k X ~ i J

Tractable in practice:
Objective and its gradient can be evaluated empirically by sampling p, and ps;

Potential U,(x) (or velocity v(x) = V U,(x) ) can be approximated by DNN;
Minimization can be performed by direct SGD;

Loss controls the Wasserstein 2 distance between p,_; and px
— constant involves Lipschitz constant of estimated v,(x) (generalization to control the KL)

Optional: Maximizing the objective over the interpolant L(x,, x«) gives optimal transport plan.



Building Flows with Stochastic Interpolants

with Michael Albergo

t=0.00 t=0.25 t=0.50 t=0.75 t=1.00 Flow True

10ex3

juejodiaiu|

Flower 129x128
ImageNet 32x32
CIFAR-10




Building Flows with Stochastic Interpolants

with Michael Albergo

CIFAR-10 ImageNet-32x32
Method
MINI-
POWER ~ GAS  HEPMASS oo o BSDS300 NLL FID | NLL FID
FFJORD 3.40
MADE 3.08 73,56 20.98 15.59 _148.85 Glow 335 4.09
Real NVP -0.17 -8.33 18.71 13.55 -153.28 DDPM <375 317
Glow -0.17 -8.15 18.92 11.35 -155.07 DDPMat 2337 290
CPF -0.52 -10.36 16.93 10.58 -154.99 ScoreSDE .99 317
NSP -0.64 -13.09 14.75 9.67 -157.54 VDM <h65 T4l <37
FFJORD -0.46 -8.59 14.92 10.43 -157.40 Soft Truncation ~ 2.88 3.45 3.85 8.42
OT—F]OW —0.30 —9.20 17.32 10.55 —154.20 SCOI‘GFIOW 2.81 5_40 3.76 10.18
Ours 0.57 1235 14.85 10.42 156.22
Ours 2.99 10.07 | 3.45 8.44

Table 2: Left: Negative log likelihoods (NLL) computed on test data unseen during training (lower
1s better). Values of MADE, Real NVP, and Glow quoted from the FFJORD paper. Values of OT-
Flow, CPF, and NSP quoted from their respective publications. Right: NLL and FID scores on
unconditional image generation tasks for recent advanced models that emit a likelihood.

What if we have no prior data from the target p. but some structural info about it ?

= Monte-Carlo sampling



Monte-Carlo Sampling

Fermi, Ulam, Metropolis, Rosenbluth, ...

Given the probability density p. € 9(L2) only known up to a normalization factor, i.c. A
pu(x) = Z; e~
with Ui : Q — R, given, but  Z. = [ e™%®dx <co  unknown:
Compute Z. and/or expectation of the observable f : Q — R
E.f:= J FX)p«(x)dx
_ - )

» GGeneric problem in Statistical Mechanics, Bayesian Inference, Uncertainty Quantification, etc.

» Analytical evaluation intractable, standard numerical quadrature methods inapplicable.

= use Monte-Carlo sampling (i.e. approximate expectation by empirical average)



Monte-Carlo Sampling

Fermi, Ulam, Metropolis, Rosenbluth, ...

Two main approaches (since sampling directly from the target p. is hard):

» Importance sampling: Generate data {x;},c, from simpler density p,(x) = Z; 'e~ Vs
and use

_EGw L X SO

E.f = = : —U@+Uy)
[Eb(w) n=eo Zi=1 W(xi)

with  w(x) =e

» Markov chain MC: Generate Markov sequence {x;};cn With kernel PX(A) = P(x;.; € A|x; = x)
such that

n—oo

. 1
E.(f) = lim S,(f) with 8,(f)=— > f(x)
i=1



Monte-Carlo Sampling

Fermi, Ulam, Metropolis, Rosenbluth, ...

Main difficulties:

» Importance sampling: independent samples but beware of high variance of the weights:

E,(w?) = oo in general
Agapiou et al. arXiv:1511.06196 (2017)

» Markov chain MC: no weights but beware of slow time-decorrelation:

1 1
E|S (f) — E«(f)]* ~ ~ (u(1 = Pyu) > ;var(f) with  u — Pu = f— E«(f)

T , L
~ —var(f) with ¢ = decorrelation time > 1 Kipnis & Varadhan CLT
n

Efficiency requires to tailor the base distribution p,, or the kernel P*(dy) to the target p..



Variational Formulations

Basic idea:

- Use the Kullback-Leibler divergence of p,_, = X,_#p,, from the target p« = Z e+ as objective;
- Notice that unknown Z is a constant that play no role.

Proposition: Given p. = Z~'e~Y and p, consider the minimization problem R
5 pt:l(x) 5
min | log Pr—1@)dx = min | [U«(x) + logp,_(x)]p,—{(x)dx + log Z.
Q p«(X) Q
subject to: 0,p,=—V - (vtpt), Pi=0 = Pp
Then all minimizers satisfy p,_; = p-.
& J

Eulerian = Lagrangian



Variational Formulations

Groposition: Given py = Z le=Y and p;, consider the minimization problem A
_ | _
minJ U.(X,_{(x)) — J V - v(X(x))dt| pp(x)dx
Q| 0 |
subject to: X (x) = v(X(x)), X_o=x
__Then all minimizers satisfy X._ 8o, = ps e. x,~p, = X_ ()~ ps. P

Tractable in principle:
- Objective and its gradient can be evaluated empirically by sampling p, ;

- Velocity v,(x) can be approximated by deep neural network (DNN);
- Constrained optimization can be performed by SGD + adjoint method.

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)



Importance Sampling and Transport

In practice:

Rezende et al., arXiv:1505.05770; ....
Noé et al., Science 365 eaaw1147 (2019)

» Use data from py, to learn the velocity v(x).

» Solve X, = v/(X,) to push forward data x, ~ p, onto X,_;(x,) ~ p,_

» Use the (imperfect) samples X,_(x,) ~ p,— to do IS, i.e. re-weight and use

E,(f(X=)Wp)
Ep(wp)

E.(f) =

Main practical issues:

1. Hard to train because of constraint
- requires adjoint method

2. Limited capacity for exploration;

3. Prone to mode-collapse.

with  wy(x) = e

—UX, )+ U (0)+ [y Vv (X,(x))dt

Movie by M. Gabrié



Assisting MCMC Sampling with Normalizing Flows

with Marylou Gabrie & Grant Rotskoff

Key observation: Any imperfect map X,_,; = 7T can be used to do Metropolis-Hastings MCMC:
- Given x;, propose a new x = T(x;) with x, ~ py;
- Set x;,; = X instead of keeping x;,; = x; with probability

4G, x) = min { p+(X) Thpy(x;) 1}

pe(x;) THpp(X)”

Albergo, Kanwar, Shanahan, Phys. Rev. D 100, 034515 (2019)
Generates a Markov sequence {x; } ;= such that

n—oo

. 1
E-(f) = lim $,(f) with S,(f) == 3" fx)
i=1

- No need to reweigh;
- Independent samples if Tﬁpb = Px (oerfect map — not needed).

This strategy can be combined with a standard MH-MCMC (e.g. MALA) by alternating proposal moves.



Assisting MCMC Sampling with Normalizing Flows

with Marylou Gabrie & Grant Rotskoff

Key observation: Any imperfect map X,_,; = 7T can be used to do Metropolis-Hastings MCMC:
- Given x;, propose a new x = T(x;) with x, ~ py;

- Set x;,; = X instead of keeping x;,; = x; with probability

) ) p(®) Thpy(x)
a(X, x;) = min —, 1
p«(x;) Thpy(X)

In practice:

» Perform MH-MCMC that alternates between:

- local sampling (e.g. with MALA), and
Gabrié, Rotskoff & V.-E. arXiv:2105.12603 (2021)

- resamp//ng Step by NFE Gabrié, Rotskoff & V.-E. arXiv:2107.08001 (2021)

» Use the generated data from p« to train the flow using interpolant method.



Assisting MCMC Sampling with Normalizing Flows

with Marylou Gabrie & Grant Rotskoff

Need rough location of modes to start sampling,
but not their relative weights.

Enable global moves
— no need to sample the transition state.

_ . Movie by M. Gabrie
Nonlinear MCMC method (i.e. kernel depends on the law)

Andrieu et al. Bernoulli 17(3), 987 (2011)

Convergence rate can be analyzed in some settings, in particular if:

- the trained map tracks perfectly the evolving distribution of the chain;
Gabrié, Rotskoff & V.-E. arXiv:2105.12603
- the training eventually stops (= diminishing adaptivity).

Brofos, Gabrié, Brubaker & Lederman arXiv:2110.13216



MCMC with NF for Sampling of Random Fields

with Marylou Gabrie & Grant Rotskoff

» Target distribution is Gibbs measure associated with gb4 enerqgy:

|

E($) = J

0

a ;1 |
<5 0,17+ 7 —(1 = ¢2)2> dx  subjectto: @(0)=¢(1)=0 (a>0)
a

» Base distribution = scaled Brownian bridge on [0,1]

4000
1.5 1 (a)
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1.0 A e RN o~
0 AR e S 3000 - L 0.125
Vi o &~ S o
0.5 J L o S
R o TN i e 9 - 0.100 €
'S 2000 A S
= - 0.075 ©
00 o
o ()
_| ; O
| oy N © 1000 0.050 2
a\\»« Ju I A ©
—1.0 - , MG = - 0.025
—157 it training end training 07 - 0.000
0.00 0.25 0.50 0.75 1.00 0 10000 20000

x Training iterations



MCMC with NF to Detect Phase Transition

with Marylou Gabrie & Grant Rotskoff

» System of particles in a box B = [0,1]? interacting via short-range attracting potential W(x):

1 &
Ulxy,...,xy) = N l.]z:l Wi(x; — xj)

» Display a first-order phase transition that can be analyzed at MF level via the free energy:

1
E(p) == Wkx-yp@p(y)dxdy+ kgT'| p(ologp(x)dx
2 B2 B
o Free energy & transition correctly
Gas and liquid-like phases N =512 detected by training the NF
"J 2o 2, K ) Z;a:., 0.05 . 1
EE WY ':’3;, 0 - 0.8
° o ..": oo.. 3 % P
L A T S 3-0.05 Lo
.:.. ‘e e o .0.:.. ®e® o .:o‘ .’. ) *Fo (]:_) ] 06
°° . 0 o o® .0 o 000 .0 .. ° ) ]
S X S R b mﬁ g 0.1
: ..o.o.: o .: ® . e ‘:...\0..\ &) _O 15+ ——gas 104
Rt SO AT - ; - - liquic
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o.{.“ ¢ ‘.' ° :.. 8 ‘Q Ve
S. e e e 0.25 * ‘ ‘ ‘ 0
* ° 0.0 0.06  0.08 0.1 0.12
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MCMC with NF for Bayesian Inference

with Marylou Gabrie & Grant Rotskoff

» Sampling of challenging (e.g. multimodal) posterior distributions;

» Allows estimation of the evidence = partition function used for model validation/selection

Application to inference of exoplanet radial velocity C’Z C’/ges‘;‘/r’;g/fe“; %’fraémgh;‘ggf; rg%{gg;’; g%gg;a/

Velocity Data. Astro. J., 837, 2017.
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Data () from signal (dashed blug) Loss (right), acceptance rate (left)

and samples from MCMCM (grey)



The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1959

EUGENE P. WIGNER

The Unreasonable Effectiveness of Machine Learning

Curses of Dimensionality (CoD):

The number of operations/parameters needed
to optimize/integrate/approximate Lipschitz

functions to precision 0 depends exponentially on <
the input dimension d, O(6™9). T | conpuir g
W csimassas ALL SYSTEMSGD

[Bellman, 61] Biasiis s

approximate high dimensional functions? 50-year-old grand

When, how, and why can neural network
e nowanaivayicaninetia neyorts AlphaFkold: a solutiontoa |
challenge in biology .



Need for Theory

DL is very costly In terms of compute and data.
Brute-force approach not sustainable.

10,000
1,000
100
©
-
80 z 0
//‘ é
Initialization mlOU ; 60 >
©
ImageNet 73.6 = o
40
300M 753 °
ImageNet+300M | 76.5 20 &
001
0
10 30 100 300 .0001
Number of examples (in millions) —
00001

[Sun et al ICCV 2017]

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

e AlphaGo Zero

e AlphaZero

e Neural Machine Translation
e Neural Architecture Search

e Xception e TI7 Dota 1vi

VGG e DeepSpeech2

®Sea2Sec ® ResNets
o€qZseq

e GoogleNet
e AlexNet ® Visualizing and Understanding Conv Nets
e Dropout
eDQN
2013 2014 2015 2016 2017 2018 2019
Year

Challenge & opportunity of MCMC: we often have a model and no prior data

(.e. we must be data-savvy since we must generate it,
but we can benchmark against the model ground truth.)
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TL;DR: We present a concurrent scheme where a normalizing flow is used to speed-up a MCMC scheme and the data from the MCMC is used to train the flow, with applications to Bayesian posterior
distribution sampling.

Abstract: Normalizing flows can generate complex target distributions and thus show promise in many applications in Bayesian statistics as an alternative or complement to MCMC for sampling
posteriors.

Since no data set from the target posterior distribution is available beforehand, the flow is typically trained using the reverse Kullback-Leibler (KL) divergence that only requires samples from a base
distribution. This strategy may perform poorly when the posterior is complicated and hard to sample with an untrained normalizing flow.

Here we explore a distinct training strategy, using the direct KL divergence as loss, in which samples from the posterior are generated by (i) assisting a local MCMC algorithm on the posterior with a
normalizing flow to accelerate its mixing rate and (ii) using the data generated this way to train the flow.

The method only requires a limited amount of \textit{a~priori} input about the posterior, and can be used to estimate the evidence required for model validation, as we illustrate on examples.



