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Motivation: Bayesian inference

Bayesian inference challenges
WPOSteriOV(X) = 7T(X | }/) X W(y | X)Trprior(x)

@ Evaluating the likelihood requires computing solution of a complex
physical model

@ Can only evaluate density up to normalization constant

@ Parameters x high dimensional, posterior may be strongly
non-Gaussian
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Motivation: Approximating expectations

@ Random variable X is distributed according to unnormalized target
density 7(x) on R?

e Goal: Compute expectations E,[f(X)]

E-[f(X)] = 5 f(x)m(x)dx

@ Monte Carlo simulation: produces i.i.d. samples X; ~ 7, estimate
E-[f(X)]

L
P%ﬁ_K;f(Xi)

Question: How to produce samples X;?
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Outline

@ Langevin samplers and perturbations
e Geometry-informed irreversible perturbations
© Transport map unadjusted Langevin algorithm

@ References
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Langevin samplers and perturbations

Overdamped Langevin dynamics
dX; = BV log m(X¢)dt + /28d W,

o 7(x) is the (unnormalized) target density on R9; 3 > 0 is the
temperature
o Ergodicity: Xy ~ mas t — oo, and
-

E, [f(X)] = /R FOm(x)dx = T'i‘lol e
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Langevin samplers and perturbations

Overdamped Langevin dynamics
dX; = BV log m(X;)dt + 1/23d W,

o 7(x) is the (unnormalized) target density on R9; 3 > 0 is the
temperature
o Ergodicity: Xy ~ mas t — oo, and
-

E;[f(X)] = /]Rd f(x)m(x)dx = lim % f(X:)dt

T—oo 0

Unadjusted Langevin algorithm (direct discretization of LD)

Xit1 = X + hﬁV log 7(Xk) + /26h&k; &k ~ N(0,1)

Ex [f(x Zka

V.
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Langevin samplers and perturbations

Unadjusted Langevin algorithm guarantees for log-concave
densities
Unadjusted Langevin algorithm

Xk+1 = Xk + Bhv |Og7T(Xk) + \/2,3/7 ki fk ~ N(O, |)
K-1

E, [f(x)] ~ % 3" £(X)

k=0

Guarantees from [Durmus & Moulines 2019]
Let U(x) = —logm(x), assume U(x) € C3(RY), Xj ~ 7k, If
e U(x) is m-strongly convex: V2U(x) = ml
e VU(x) is L-Lipschitz: V2U(x) < LI
then W2(rk 1) < Cr*W2(z% 71) + F(m, L, h) with r < 1, and F(m, L, h)

is the bias
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Langevin samplers and perturbations

Unadjusted Langevin algorithm guarantees for log-concave
densities
Guarantees from [Durmus & Moulines 2019]
Let U(x) = — log m(x), assume U(x) € C?(RY), Xy ~ k. If
e U(x) is m-strongly convex: V2U(x) = ml
e VU(x) is L-Lipschitz: V2U(x) < LI
then W2(rk, 7r) < CrkW2(7%, 71) + F(m, L, h)

e What happens if U(6) does not satisfy these conditions?
» Few theoretical guarantees, possible slow convergence

Konstantinos Spiliopoulos ( Department of MNovel perturbations for accelerating Langevin 7 /49



Langevin samplers and perturbations

Unadjusted Langevin algorithm guarantees for log-concave
densities

Guarantees from [Durmus & Moulines 2019]

Let U(x) = — log m(x), assume U(x) € C?(RY), Xy ~ k. If

e U(x) is m-strongly convex: V2U(x) = ml
e VU(x) is L-Lipschitz: V2U(x) < LI
then W2(rk, 7r) < CrkW2(7%, 71) + F(m, L, h)

e What happens if U(6) does not satisfy these conditions?
» Few theoretical guarantees, possible slow convergence

@ Novel perturbations to Langevin dynamics can accelerate
convergence

@ Transport map ULA relaxes some conditions, provides some
guarantees
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

Reversible perturbations (RMLD)

dX; = [BB(X:)V log m(X¢) + V - B(Xy)] dt + /2BB(X;)d W,
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

Reversible perturbations (RMLD)

dX; = [BB(X:)V log m(X¢) + V - B(X;)] dt + /28B(X;)d W,

e B(x) =B(x)", B(x) = 0. In continuous-time, no optimal choice of
B(x), but if B(x) — I > 0, then obtain accelerated convergence
[Rey-Bellet & Spiliopoulos 2016]
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

Reversible perturbations (RMLD)

dX; = [BB(X:)V log m(X¢) + V - B(X;)] dt + /28B(X;)d W,

e B(x) =B(x)", B(x) = 0. In continuous-time, no optimal choice of
B(x), but if B(x) — I > 0, then obtain accelerated convergence
[Rey-Bellet & Spiliopoulos 2016]

e Riemmanian manifold Langevin dynamics: B(x) = G(x)™*, inner
product gy : TyM x TyM — R, gi(u,v) = (G(x)u, v). Inspired by
information geometry

-1
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

Irreversible perturbations (Irr)

dX; = [BV log m(X;) + v(X)] dt + /284 W,

e Condition on ~(x) so that target is held invariant:
V- (v(x)7(x)) = 0.

e Simple choice: v(x) = DVlog7(x), D= -DT.

@ In continuous-time, will always improve convergence [Rey-Bellet &
Spiliopoulos 2016] )
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Langevin samplers and perturbations

Perturbations accelerate convergence of Langevin dynamics

dX; = [BB(X:)V log m(X;) + V - B(X;)] dt + /28B(X;)d W,

dX; = [BV log 7(X¢) + ¥(Xe)] dt + /28dW;, 7(x) = DV log m(x)

Theorem [Rey-Bellet & Spiliopoulos 2016]

Let £ and Ly be the generators of RMLD and OLD. If B(x) — 1~ 0 or
any D= —DT, then

@ Spectral gap (leading nonzero eigenvalue of generator) decreases

@ Asymptotic variance 02(¢) = lim;_ 00 tVar( fo d(Xt) dt) is smaller

@ Large deviations rate function increases
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Geometry-informed irreversible perturbations

Geometry-informed irreversible perturbations (Gilrr)
How to apply irreversibility to an already reversibly perturbed
system?

Standard irreversibility applied to reversible perturbation (RMIrr)

dX: = [BB(X;)Vlog m(X:) + V - B(6:) + v(Xe)] dt + /28B(X:)d W,
v(x) = DVlogm(x), D=-D"

Konstantinos Spiliopoulos ( Department of MNovel perturbations for accelerating Langevin 11 / 49



Geometry-informed irreversible perturbations

Geometry-informed irreversible perturbations (Gilrr)

How to apply irreversibility to an already reversibly perturbed
system?

Standard irreversibility applied to reversible perturbation (RMIrr)

dX: = [BB(X;)Vlog m(X:) + V - B(6:) + v(Xe)] dt + /28B(X:)d W,
v(x) = DVlogm(x), D=-D"

Geometry-informed irreversibility (new!)

dX; = [BB(X:)V log 7(X¢) + V - B(X) + (X)) dt + /28B(X;)d W,
7(x) = C(x)Vlogm(x) + V- C(x)

1
C(x) = 5 [B(x)D + DB(x)], note C(x) is still skew-symmetric!

[Zhang, Marzouk, Spiliopoulos, Geometry-informed irreversible perturbations for accelerated
convergence of Langevin dynamics, Statistics and Computing, 2022.]
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Geometry-informed irreversible perturbations

Simple example: parameters of a normal distribution
[Girolami 2011]

N

N Xi — p)?
log (11, 7[X) = - log 27 — Nlog 7 — > (202’“‘)
i=1
21 0 0 1
Bluo) =T [0 1/2} D=9 [—1 o]
wi g 2 E[AVary] | Std[AVary]
cul3 s - LD 8332 4359
. \, o\ b [mC Ja0m 1378
{)10 -5 5 10 ?10 -5 0 5 7(;“3; 2 1 69 1 072
: : RMIrr | 1729 631.2
Gilrr | 479.4 170.8

¢(p,0) = p? + g
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Geometry-informed irreversible perturbations

Independent component analysis [Amari 1996, Welling &
Teh 2011]

m
7(W|X) = det W H p(w; x) H/\/(WU 0,271
i=1 i
® p(y) = gsech®(3y)
@ After vectorization, reversible perturbation that is also positive is
B(W)=W'W®Ils+/.

@ Geometry-informed irreversible perturbation is
1
7(W) = 7 [DB(W) + B(W)D]

where D is any m? x m? skew-symmetric matrix.

@ In our experiments D = (1@ Co + Co® 1), Cop = —C/
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Geometry-informed irreversible perturbations

Posterior distribution for an independent component
analysis problem
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Geometry-informed irreversible perturbations

Geometry-informed irreversible perturbation mixes better

E[AVa r¢] Std [AVa r¢]
Standad Lgovin LD 50.17 17.92
m RM | 2675 | 8.442
Irr 27.02 9.134
" s RMIrr | 19.47 6.086
GiIrr | 6.381 1.777
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Geometry-informed irreversible perturbations

Geometry-informed irreversible perturbation mixes better

Standard Langevin
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BW) = (L3 W;)”

@ Open question: Are there
guarantees for discretizations of

perturbed LD?

@ What about the reversible
perturbation?

o New/different perspective
based on measure transport
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Transport map unadjusted Langevin algorithm

Transport maps are functional representations of random
variables

Transport maps
@ Choose X ~ 7 (e.g., standard Gaussian)

@ Seek a deterministic, invertible map T : R? — R such that
m(y) = Tyn(y) = n(S(y)) det Js(y), Js(y) is the Jacobian of S.
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Transport map unadjusted Langevin algorithm

Transport maps are functional representations of random
variables

n s n ™

Transport maps
@ Choose X ~ 7 (e.g., standard Gaussian)

o Seek a deterministic, invertible map T : RY — R? such that
m(y) = Tyn(y) = n(S(y)) det Js(y), Js(y) is the Jacobian of S.
If X ~ 1, then Y = T(X) ~ 7.
@ Many ways to find T: optimal transport, triangular transport, etc.
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Transport map unadjusted Langevin algorithm

Transport maps define reversible and irreversible
perturbations

o TM: Let X ~ 1, Y ~ 7. Transport maps Tyn = m, S47m =1

Proposition: TM + LD = RMLD

o LD on n: dX; = Vlogn(X¢)dt + v2dW;
o Yt = T(Xt) is an RMLD with B(Yt) (JS(Yt)*JS(Yt))

dY; = [B(Y:)ViIogm(Y:) + V - B(Y:)] dt + /2B(Y;)d W,
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Transport map unadjusted Langevin algorithm

Transport maps define reversible and irreversible
perturbations

Proposition: TM + Irr = Gilrr
o Irreversible LD on np with D= —D:
dX; = (14+ D)V log n(X;)dt + v2d W,

o Y, = T(X;)is a Gilrr with B(Y;) = (Js(Ye)*Js(Ye)) L,
C(Y:) =Js(Ye) IDJIE(Ye) !

dY: =[(B(Y:) + C(Y:))Viog7(Y:) + V- (B(Y:) + C(Yy))]dt + +/2B(Y:)dW
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Transport map unadjusted Langevin algorithm

Transport maps define reversible perturbations

Proposition: TM + LD = RMLD
o Langevin dynamics on n = Sym: dX¢ = Vlogn(X;)dt + v2d W,
o Y, = T(X,) is an RMLD on 7 with B(Y;) = (Js(Y:)*Js(Y:))~!

dY; = [B(Yy)Vlog m(Y:) + V- B(Y:)] dt + /2B(Y:)d W,

Insights and implications

e Transport maps parameterize reversible perturbations (or metrics)

@ Transport maps provide new way for discretizing RMLD
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Transport map unadjusted Langevin algorithm

Construction of triangular transports

S1(y1) Iy 51

52(}/1,)/2) 0, S 0,5
S5 yd) = |. = Js(y) = :yl :y2 '

Sd(y1,-~-7}/d) 8)/1561 8}/de

msin Dk (Sim||N(0,14)) = msaxIE7r log S*A/(0, Id)}

@ Each component map S; is parametrized to be monotone in the
leading variable
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Transport map unadjusted Langevin algorithm

Construction of triangular transports

S1(y1) Iy 51

52(}/1,)/2) 0, S 0,5
S5 yd) = |. = Js(y) = :yl :y2

Sﬁ(yﬁa-"7yﬂ) éblsd T Ebasd

msin Dk (Sim||N(0,14)) = mSaxIE7r log S*A/(0, Id)}

@ Each component map S; is parametrized to be monotone in the

leading variable
@ Monotone, triangular structure = fast computation of S~1and

det Js
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Transport map unadjusted Langevin algorithm

Construction of triangular transports

S1(y1) 0y, S1

Sa(y1, y2) 9y, 5 0y,5
SO va) = | = Jsy)=|."" "

Sﬁ(yﬁa-"7yﬂ) éblsd T Ebysd

msin Dk (Sim||N(0,14)) = mSaxIE7r log S*A/(0, Id)}

@ Each component map S; is parametrized to be monotone in the
leading variable

@ Monotone, triangular structure = fast computation of S~1and
det Js

@ Approximate map produces samples approximating 7, but has bias
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Transport map unadjusted Langevin algorithm

Construction of triangular transports

S1(y1) Iy 51

52(}/1,)/2) 0, S 0,5
S5 yd) = |. = Js(y) = :yl :y2 '

Sd(yla"‘7yd) 8)/1561 8}/de

msin Dk (Sim||N(0,14)) = mSaxIE7r log S*A/(0, Id)}

@ Each component map S; is parametrized to be monotone in the
leading variable

@ Monotone, triangular structure = fast computation of S~1and
det Js

@ Approximate map produces samples approximating 7, but has bias

o With a few samples from 7, learn a monotone triangular map via ATM
» On the representation and learning of monotone triangular transport
maps [Baptista et al. 2020]
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Transport map unadjusted Langevin algorithm

Transport map unadjusted Langevin algorithm

e Given target m(y) and a triangular map S(y) = T71(y)

o Define reference n(x) = (Sym)(x) = (T (x)) det J7(x),
Vlogn(x) = Viogm(T(x)) + V logdet J7(x)

@ Construct Langevin dynamics on n = Sy, apply map T = S14o
trajectories on 7
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Transport map unadjusted Langevin algorithm

Transport map unadjusted Langevin algorithm

e Given target m(y) and a triangular map S(y) = T71(y)

o Define reference n(x) = (Sym)(x) = (T (x)) det J7(x),
Vlogn(x) = Viogm(T(x)) + V logdet J7(x)

@ Construct Langevin dynamics on n = Sy, apply map T = S14o
trajectories on 7

Transport map unadjusted Langevin algorithm (TMULA)

. as -t
Xir1 = X + hI5(Yi) ™ |V log m( Yk)+z y )] Hi(Ye)| +V2hékia

V log n(Xk)

Yirr = T(Xi1)

_ [ os os, 1T
where H;(Yy) = |:<9y1<9y,- aydayf] :

21/ 49
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Transport map unadjusted Langevin algorithm

Other instances of transformed Langevin processes

@ Mirror Langevin for sampling constrained distributions
» Mirrored Langevin dynamics [Hsieh et al. 2018]
» Wasserstein control of Mirror Langevin Monte Carlo [K Zhang et al.
2020]
> Defines map as Vh, where h is convex. Inverse is convex conjugate
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Transport map unadjusted Langevin algorithm

Other instances of transformed Langevin processes

@ Mirror Langevin for sampling constrained distributions
» Mirrored Langevin dynamics [Hsieh et al. 2018]
» Wasserstein control of Mirror Langevin Monte Carlo [K Zhang et al.
2020]
> Defines map as Vh, where h is convex. Inverse is convex conjugate
e Transport map accelerated MCMC (including TM-MALA) [Parno
& Marzouk 2018]
» Constructs triangular invertible transport for MCMC proposals
e Adaptive Monte Carlo augmented with normalizing flows [Gabrié
et al. 2022]

> Similar to TM-MCMC, where the maps are normalizing flows
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Transport map unadjusted Langevin algorithm

Other instances of transformed Langevin processes

@ Mirror Langevin for sampling constrained distributions
» Mirrored Langevin dynamics [Hsieh et al. 2018]
» Wasserstein control of Mirror Langevin Monte Carlo [K Zhang et al.
2020]
> Defines map as Vh, where h is convex. Inverse is convex conjugate
e Transport map accelerated MCMC (including TM-MALA) [Parno
& Marzouk 2018]
» Constructs triangular invertible transport for MCMC proposals
e Adaptive Monte Carlo augmented with normalizing flows [Gabrié
et al. 2022]
» Similar to TM-MCMC, where the maps are normalizing flows
e Variable transformation to obtain geometric ergodicity [Johnson
& Geyer 2012]
» Provides generic functions to transform tails of (sub)-exponentially
light distributions for MCMC
e Heavy-tailed sampling via transformed ULA [He et al. 2022]
» Provides generic functions to transform heavy-tailed distributions and
applies ULA
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

Bayesian inference problem Target PDF 7
o Given data {X;}M, ~ N(u,0?)
@ Infer p,v =logo € R.
@ Prior u ~ N(0,3), v ~T(2,1)

(1, vX) o

2
1
2-N 2_7_7 52X
exp(( W+2y—e 5
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

Learn a very approximate map via ATM

Target PDF 7 N(0,T) Approximate PDF S*N/(0,I)
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

N(0,T)

Approximate PDF S*A/(0,T)

pel

@ :

-2 0 2 4 -4 -2 0 2
X, v=logo
Target PDF 7

Pushforward S;m
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

Target PDF 7

Pushforward S,m

-4 -2 0 2

Xier1 = X+ hIE (Vi) ™ [V log w( Vi) + 0Ly (Ty;(yk)) Hi(yk)] + V2hék
Yir1 = T(Xk11)
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Transport map unadjusted Langevin algorithm

Numerical example: TM + Irr = Gilrr
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Transport map unadjusted Langevin algorithm

Numerical example: Funnel distribution

1

SHSY 0

RMLD: B(u,v) = 2N5’Y 1 expected Fisher information plus negative Hessian of log prior.
Ne—27+1/3

TMRMLD: B(p, ) ™! = 3d Js(u, 7).

Consider test functions ¢1(u, v) = exp(), ¢2(t, ) = v + w, and ¢3(i, v) = 2 + p?.

B[AVary, | Std[AVar,, | E[AVarg, | Std[AVar, | B[AVary. | Std[AVar, |
ULA 8.759 1.797 1.957 0.4774 195.4 35.30
RMLD 25.46 7.550 28.82 2.860 1558 184.8
TMRMLD 1.344 0.2057 2.655 0.3705 108.7 15.48
TMULA 1.444 0.2061 2.480 0.3475 114.8 14.00
TMULA + Irr] 1.243 0.2131 1.961 0.2851 92.72 12.89

Table 1: Asymptotic variance estimates for the funnel distribution.
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Transport map unadjusted Langevin algorithm

Convergence guarantees

Proposition: guarantees revisited

Let U(y) = —logn = —log Sym € C?(RY), Yy ~ 7k, Xy ~ nk. If
e ml < V2U =< LI (strong convexity and Lipschitz gradients)
e S is appropriately monotone [|S(y) — S(Y')|| > plly — ¥/|l

Crk
WZZ(Wk77r) < ?Wg(noa’r/) + F(ma L7 h)

where r =1 — ﬁ F(m, L, h) is the bias

@ Does such a map S exist?
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Transport map unadjusted Langevin algorithm

Convergence guarantees

Proposition: guarantees revisited

Let U(y) = —logn = —log Sym € C?(RY), Yy ~ 7k, Xy ~ nk. If
e ml < V2U =< LI (strong convexity and Lipschitz gradients)
e S is appropriately monotone ||S(y) — S(y')|| > plly — ¥/l

Crk
WZZ(T‘-k?ﬂ-) < ?sz(noaﬁ) + F(ma La h)

where r =1 — ﬁ F(m, L, h) is the bias

@ Does such a map S exist? Yes: there exists (many) maps such that 7
is isotropic normal!
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Transport map unadjusted Langevin algorithm

Convergence guarantees

Proposition: guarantees revisited

Let U(y) = —logn = —log Sym € C?(RY), Yy ~ 7k, Xy ~ nk. If
e ml < V2U =< LI (strong convexity and Lipschitz gradients)
e S is appropriately monotone ||S(y) — S(y')|| > plly — ¥/l

Crk
WZZ(T‘-k?ﬂ-) < ?sz(noaﬁ) + F(ma La h)

where r =1 — ﬁ F(m, L, h) is the bias

@ Does such a map S exist? Yes: there exists (many) maps such that 7
is isotropic normal!

@ Can the rate be optimized?
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Transport map unadjusted Langevin algorithm

Convergence guarantees

Proposition: guarantees revisited

Let U(y) = —logn = —log Sym € C?(RY), Yy ~ 7k, Xy ~ nk. If
e ml < V2U =< LI (strong convexity and Lipschitz gradients)
e S is appropriately monotone ||S(y) — S(y')|| > plly — ¥/l

Crk
WZZ(T‘-k’ﬂ-) < ?sz(noaﬁ) + F(ma La h)

where r =1 — ﬁ F(m, L, h) is the bias

@ Does such a map S exist? Yes: there exists (many) maps such that 7
is isotropic normal!

@ Can the rate be optimized? Yes: optimal when m=L <= nis
isotropic normal!
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Transport map unadjusted Langevin algorithm

Transport map ULA is a different discretization of RMLD
RMLD
dY; = [B(Y:)Vlogm(Y:) + V - B(Yy)] dt + /2B(Y:)d W,
with B(Y:) = (Js(Ye)*Js(Ye)) ™t

TMULA:

d -1
Yie1=T (S(Yk) + hIE(Yi) {V log (Vi) + Y (85’ (Yk)) Hi(Yi)
i=1

Oyi

+ mfkﬂ)

Euler-Maruyama applied to RMLD:

Vi1 = Yie + h(Is(Yi) " Is(Yi)) " Viog (Vi) + V - (Is(Yie)*Is (Vi) ™) + V2hék i1
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Transport map unadjusted Langevin algorithm

Transport map ULA is a different discretization of RMLD
TMULA:

) 8y,

+ m&kﬂ)
EMRMLD:

Vi1 = Y+ h(Is(Yi) ™ Is(Yi)) " Viog (Vi) + V - (Is(Yi)*Is (Vi) ™) + V2hék i1

Proposition: EMRMLD approximates TMULA
Let TMULA,, denote the mth component, m=1,...d. Then
TMULA, = EMRMLDy + h (€mi1 V2 Tmémin — S0y ST ) +O(h3?)

v

Proposition: Regularity of T affects variance of error

1

2
82 Tm PTm (P
Var [ hémi1V2 Tm€mi1 — h ) =" +3
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Convergence to the numerical invariant measure

Asymptotic bias of the ergodic estimator

Rate of convergence of e [Abduelle et al. 2013]

With an integrator of local weak order p,

e(p, h) = —\,h? + O(hPT)

with Ap = [0 [zo (ﬁﬁpﬂ — Ap> u(y, t)m(y)dydt.

In very restrictive settings, can compute that A, for TMULA is smaller
than for EMRMLD.
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Numerical example: banana example

log m(y) = —yi/s> — (y» + byf — 100b)?, with s =4, b = 0.01

. y1/s . .. . . . .
Sy1,y2) = {}/2 +by? - IOOb] . this is pushing it to a Gaussian density

oy, y2) =yi+n+yi+y

Exact samples

0
_-1000

2000/ s
-3000

Y2

-2000

50 0 50
Y Y
LD THULA RMLD
0 = 0 0
1000 1000 1000 /-\
= 2000 = 2000 = 2000 ’ :
-3000 -3000 -3000
-50 0 50 -50 0 50 -50 0 50
n Y n
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Numerical example: banana example

Compute now the leading eigenvalue for the asymptotic bias:

A1~ _e(¢7 h)/h
log(y) = —y? /s> — (yo + by? — 100b)?, with s =4, b= 0.01
S(y1,y2) = Yi +y1+ Y3 + v

@ We can calculate ATMUA = —0.62 while NEMRMLD — 34 69

@ Transport map accelerates convergence because it is a reversible
perturbation.
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Numerical example: Hybrid Rosenbrock [Pagani et al.

2022]
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Figure 1: w(y) o exp
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Numerical example: Hybrid Rosenbrock [Pagani et al.
2022]

AT NValaririls # e e
IINAr R rAINar i
(I PSP R ) -
Pardra S Vdls R AL Ll Vel
irrarayava g X FEF 207

05 1 150 1 2 0 2 4 01020 0 1 2 02 4 601020830 0051150 1 2 0 2 4 0 10 200 1 2 0 2 40 5 10

Figure 2: Left: TMULA, Right: ULA. Step size h = 0.01
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Numerical example: Hybrid Rosenbrock [Pagani et al.
2022]

Measuring sample quality via kernelized
Stein discrepancy [Gorham & Mackey

10%

2017] v
@ Approximates integral probability o B gy T
metrics 2
10!
du(fk,m) = sup Bz [0(2)] = Ex[o(X)]]
€

10? 10° 10*
@ Only requires evaluations of V log 7(x) ’
and a kernel function
@ Observation: TMULA
allows taking larger step
dy (7, ) = 0 <= @tk — 7 in distribution size. Here h = 0.01.

@ For H is large enough
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Numerical example: Hybrid Rosenbrock [Pagani et al.

2022]
Consider test functions ¢1(Y) = >.7_; Y7 and ¢s(Y) = S1_,(Y)2
E[AVar,,] | Std[AVar,,] | E[AVars,] | Std[AVarg,]
UILA | 6762 2663 6.957 x 10° | 5.185 x 10°
TMUILA | 65.03 28.54 6506 1284

Table 2: Asymptotic variance estimates for the hybrid Rosenbrock distribution.
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Some caveats
Discretizations of irreversibly perturbed systems
@ lIrreversible term increases stiffness

o May lead to worse performance due to extra bias

Lighter than Gaussian tails

e Euler-Maruyama discretization may be transient (e.g., EM on
dXe = —X3dt + 2dW,)!
@ TMULA may blow up because it explores tails better (chain diverges
there)
Implicit Euler-Maruyama schemes may be used
K T 1 < (o o
S(Y*)=S(Y*)+ hig (Y*)™ [vymgw(v*) -> ((i(v*)) H;(Y*)}
i=1 4
Xis1 = S(Y*) + Vahe

Yir1 = T(Xeq1)s

2%s; 2%s;
9y19y;’ > Oyq 9y

-
where H;(Y¥) = { ] , where €5+~ (0, 1).
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Cautionary tale: Multimodal distributions

Target

-5 0 5
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Conclusion

Algorithmic aspects
o Improved sample quality and accelerated convergence of LD
o Novel geometry-informed irreversible perturbations

o We considered triangular transport, but TMULA is agnostic

Theoretical aspects

@ Transport map ULA can guarantee fast convergence for a larger class
of distributions

@ Transport map applied to Langevin dynamics is Riemannian manifold
Langevin dynamics
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Future directions

@ Interacting particle systems formulation for learning maps
@ Analyzing the TM-MALA (with Metropolis-Hastings correction)

@ improve our theoretical understanding of how to characterize the
transport map within a given approximate class that maximizes the
efficiency of TMULA sampling

@ Better approximation of transport maps in the presence of
multimodality
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