
Learning Committor Functions and Invariant Distributions

for Randomly Perturbed Dynamical Systems

Weiqing Ren

Department of Mathematics
National University of Singapore

Joint work with Qianxiao Li and Bo Lin (NUS)

Dynamical systems perturbed by small noise

Consider a dynamical system modelled by the stochastic
differential equation (SDE):

dXt = f (Xt)dt +
√
εdWt , Xt ∈ Rd

where f : deterministic force field ;
Wt : Wiener process; ε: strength of the noise.

In this talk, we discuss machine learning methods for the
computation of

The committor function;
The invariant distribution.

The committor function

We consider the over-damped Langevin dynamics, where
f = −∇V .

Assume the system has two metastable states (sets), A
and B

When the noise is small, the dynamics is characterized by
long waiting period in metastable states followed by
transitions from one state to the other.

The committor function (cont’d)

The committor function q : Ω → [0,1] for the transition from A to
B is defined as

q(x) = Prob
{
τB(x) < τA(x)

}
.

where τA,B(x) is the first hitting time of A (B) initiated at x .

q characterizes the progress of transitions from A to B.

Much information regarding the transition, e.g. pathways,
transition states and rates, can be obtained from q.

Example of the committor function

Figure: Contour lines of the potential V and the committor function q
at ε = 10 (the energy barrier ≈ 100).

The backward Kolmogorov equation

A “simple” mathematical characterization:{
∇V · ∇q − β−1∆q = 0,
q(x) = 0, x ∈ ∂A; q(x) = 1, x ∈ ∂B

Difficult to solve numerically due to high dimensionality.

We introduce a numerical method which combines deep
learning and data sampling to efficiently compute the
committor function for high-dimensional systems and at
low temperatures.

Related work: Khoo, Lu & Ying; Evans, Cameron & Tiwary;
Vanden-Eijnden et al; ...

A variational formulation

An equivalent variational formulation:

min
q

1
Z

∫
Ω\(A∪B)

|∇q(x)|2e−βV (x)dx ,

subject to the condition

q(x) = 0, x ∈ ∂A,
q(x) = 1, x ∈ ∂B.

Here Z =
∫
Ω\(A∪B) e−βV (x)dx .

Parameterization of q using a neural network

To impose the BCs, we minimize the objective functional
over functions of the form

q(x) =
(
1 − χA(x)

)[(
1 − χB(x)

)
q̃(x) + χB(x)

]
,

where χA,B(x) are indicator functions on A and B, resp.

Paramterize q̃ using a feed-forward neural network:

qθ(x) = (1 − χA(x)) [(1 − χB(x))q̃θ(x) + χB(x)] .

Hyperbolic tangent function and sigmoid function are used
as the activation function in the hidden layers and output
layer, resp.

Unsupervised learning problem

The unconstrained learning problem:

argmin
θ

1
Z

∫
Ω\(A∪B)

|∇xqθ(x)|2e−βV (x)dx .

or in the form of an expectation

argmin
θ

EX∼ρ

[
|∇xqθ(X)|2pβ(X)/ρ(X)

]
,

where pβ(x) = Z−1e−βV (x) and the expectation is taken
w.r.t. the distribution ρ.

Unsupervised learning problem (cont’d)

Approximate the expectation by sample average:

EX∼ρ

[
|∇xqθ(X)|2

pβ(X)

ρ(X)

]
≈ 1

N

N∑
i=1

|∇xqθ(X (i))|2
pβ(X (i))

ρ(X (i))
,

where X (i) are i.i.d. samples from ρ.

Choice of ρ ?

ρ should be chosen such that the transition state region, where
q changes sharply from 0 to 1, is adequately sampled.

Sampling distribution

In the numerical examples, we use

Equilibrium distribution at an artificial (higher) temperature

ρ(x) =
1
Z ′e

−β′V (x)

with β′ = 1/kBT ′ and T ′ > T .

Metadynamics

ρ(x) =
1

ZG
e−β

[
V (x)+VG(x)

]
.

where VG is superposition of localized Gaussian functions.

Example: Extended Mueller potential

Consider the Mueller potential embedded in the
10-dimensional space

V (x) = Vm(x1, x2) +
1

2σ2

10∑
i=3

x2
i , x ∈ R10

where Vm(x1, x2) is the rugged Mueller potential in two
dimensions.

“Exact” solution
qm(x1, x2) at kBT = 10
obtained by solving the
backward equation
using the finite element
method:

Example: Extended Mueller potential

Data are sampled at the temperature kBT ′ = 20 .

Of these data, 70% and 30% are used as the training and
validation dataset respectively.

The neural network is fully connected, and the hyperbolic
tangent function is used as the activation function in the
hidden layers. Sigmoid function is used in the output
layer.

Use the package Tensorflow to train the network at the
physical temperature kBT = 10.

Example: Extended Mueller potential

Figure: The 1/2-isosurface of qθ projected onto the (x1, x2) plane and
100 transition states sampled on the isosurface.

Example: Isomerization of Alanine dipeptide

The molecule has two main metastable conformations C7eq
and C7ax . The metastable sets A and B are chosen as

A = {x : |(ϕ(x), ψ(x))− C7eq| < 10◦} ,
B = {x : |(ϕ(x), ψ(x))− C7ax | < 10◦} .

We study the isomerization process of the alanine
dipeptide in vacuum at T = 300 K.

Example: Isomerization of Alanine dipeptide

Feature engineering:

For conformational changes of bio-molecules, very often
only a few collective variables (e.g. torsion angles, bond
angles), play a major role in the transition event.

The committor function is well-approximated by a function
of these collective variables

q(x) = f (z1(x), ..., zm(x)).

We make use of collective variables in the design of the
first input transformation layer of the network.

Example: Isomerization of Alanine dipeptide

Architecture of the neural network:

The feature layer consists of the sine and cosine of selected
torsion angles.

Example: Isomerization of Alanine dipeptide

Data sampling: 105 data points are sampled from
metadynamics (biasing ϕ and ψ).

70% and 30% of the data are used as the training and
validation set, resp.

Train the network at T = 300 K using Tensorflow. The
computation is terminated when the validation error no
longer decreases.

Example: Isomerization of Alanine dipeptide

To check the accuracy of the numerical results,

Sample 100 states on the 1/2-isocommittor surface using
the constrained Langevin dynamics at T = 300 K.

Compute the "true" committor value using 200 trajectories
initiated from each state with randomly chosen initial
velocities.

Example: Isomerization of Alanine dipeptide

Figure: Distribution of the "true" committor values for the 100 states
sampled on the 1/2-isosurface of qθ. The feature layer consists of the
sines and cosines of 9 (left panel) and 41 (right panel) torsion angles.

Learning invariant distributions from noisy data

Consider a process xt in the d-dimensional space modeled by
the SDE:

dxt = f(xt)dt + σdWt , t > 0

where
f : Rd → Rd is the force field
Wt is a standard m dimensional Brownian motion;
σ is a d × m matrix.

The invariant distribution

The invariant distribution:

p(x) = lim
T→∞

1
T

∫ T

0
δ(xt − x)dt .

The Fokker-Planck equation:

−∇ · (f(x)p(x)) + ϵ∇ · (D̄∇p(x)) = 0, x ∈ Rd

with the normalization condition∫
Rd

p(x)dx = 1.

Here ϵD̄ = D = σσT , where ∥D̄∥ = 1.

The generalized potential

The generalized potential

V (x) = −ϵ log p(x).

The governing equation for V :

∇V · (f(x) + D̄∇V)− ϵ∇ · (f(x) + D̄∇V) = 0

or equivalently

f(x) = −D̄∇V (x) + g(x),
∇V (x) · g(x)− ϵ∇ · g(x) = 0.

Problem setup

We only have partial knowledge of the dynamics:

The dynamics is in the form of the SDE, but the force field f
and the matrix σ are unknown.

We have access to (possibly short) trajectories of the
dynamics.

Given N trajectories: xi(t), i = 1, . . . ,N.

Sample M pairs of states along each trajectory:

(X j,0
i ,X j,1

i), j = 1, . . . ,M

where X j,0
i = xi(tj), X j,1

i = xi(tj + h), h is a small time step.

Goal: Learn the force field f in the form of the
decomposition and the diffusion matrix D, from the noisy
data.

Parameterization of the force field

Parameterized force field:

fθ(x) = −D̄∇Vθ(x) + gθ(x).

where Vθ and gθ are feed-forward fully connected neural
networks:

Vθ(x) = Sθ(x) + ρ · (x − c)2 := Sθ(x) +
d∑

i=1

ρi(xi − ci)
2.

Activation function: hyperbolic tangent function

Optimize the trainable parameters (θ,D) by minimizing a
loss function (θ here includes ρ and c).

Loss function

The loss function:

L = L0(θ,D; I) + λL1(θ,D; I)

L0 is the negate of the log-likelihood of the data set:

L0(θ,D; I) = 1
2
log det(D) +

h
2|I|

∑
(i,j)∈I

∥∥∥Y j
i − fθ(X

j,0
i)

∥∥∥2

D−1
.

L1 is the constraint for the decomposition of the force:

L1(θ,D; I) = 1
|I|

∑
(i,j)∈I

∣∣∣∣∇Vθ(X
j,0
i)T gθ(X

j,0
i)− 1

2
∥D∥2∇ · gθ(X

j,0
i)

∣∣∣∣2 .
Here Y j

i = (Xi(tj + h)− Xi(tj))/h.

Algorirhm

Example: a two-dimensional system

Consider the SDE in 2d:
ẋ =

1
5

x(1 − x2) + y(1 + sin x) +
√

1
50 ξ1,

ẏ = −y + 2x(1 − x2)(1 + sin x) +
√

1
5 ξ2.

Two metastable states: xa = (−1,0), xb = (1,0).

Example: a two-dimensional system
Sampling data from trajectories:

Distribution of N = 105 initial states (upper-left) and its
evolution following the dynamics.
10 pairs of data points are sampled from each trajectory
during the transient period [0,1].
neural network: two hidden layers with 50 nodes on each
layer for both Sθ and gθ.

Example: a two-dimensional system

Learned force field (left) vs. true force field (right):

Example: a two-dimensional system
Learned generalized potential (left) vs. finite difference solution
(right):

Example: a two-dimensional system

Learned diffusion matrix:

D̃ =

[
1.989 × 10−2 5.616 × 10−4

5.616 × 10−4 1.985 × 10−1

]
.

The true diffusion matrix is D = diag(1/50,1/5).
Relative error: 8.3 × 10−3.

Example: Lorenz system

Dynamical equations:
ẋ = β1(y − x) +

√
2ϵ ξ1,

ẏ = x(β2 − z)− y +
√

2ϵ ξ2,

ż = xy − β3z +
√

2ϵ ξ3,

where
ξ = (ξ1, ξ2, ξ3) is a 3d white noise.
The diffusion matrix D = 2ϵI3, ϵ = 20.
β1 = 10, β2 = 28, β3 = 8/3.

Example: Lorenz system

Data are sampled from N = 104 trajectories over the time
interval [0,2].

M = 200 pairs of data points are sampled from each
trajectory.

Neural networks: two hidden layers with 100 nodes on
each layer for both Sθ and gθ.

Example: Lorenz system

Learned potential Vθ (upper panels) vs. V = −ϵ log p(x) (lower
panels), where p is estimated using MC:

Example: Lorenz system

Learned distribution pθ (upper panels) vs. MC solution (lower
panels) :

Example: EMT-metastasis network

Ten-dim dynamical system, modelling a biological network.

Earlier work used various methods to estimate the
invariant distribution. For example, the distribution was
estimated under the assumption that the different variables
are independent.

In the current method, the data are sampled from N = 105

trajectories, 36 pairs from each.

Neural network: two hidden layers with 100 nodes on each
layer for both Sθ and gθ.

Example: EMT-metastasis network

The free energy landscape V θ
2,10 (left) and V θ

6,3 (right) vs. MC
solutions:

Free energy:

V θ
2,10(x2, x10) = −ϵ̃ log

∫
R8

exp

(
−1
ϵ̃

Vθ(x1, . . . , x10)

)
dx1dx3 · · · dx9,

V2,10(x2, x10) = −ϵ log
∫
R8

p(x1, . . . , x10)dx1dx3 · · · dx9.

Summary

The method for the committor function combines deep
learning with data sampling and feature engineering .

It provides an alternative approach to study high-d complex
systems with rough energy landscapes.

For the problem of computing the invariant distribution, the
dynamics is assumed to be in the form of SDEs, but the
deterministic force field and the diffusion are both
unknown.

The method learns the force field, in particular the
generalized potential, and the diffusion from noisy data
sampled from short trajectories.

Summary

Ref: Q. Li, B. Lin and W. Ren, Computing committor functions for the
study of rare events using deep learning, J. Chem. Phys. 151,
054112 (2019)

Ref: B. Lin, Q. Li and W. Ren Computing high-dimensional invariant
distributions from noisy data , J. Comput. Phys. 474, 111783 (2023)

