Sampling Rare Event Energy Landscapes via a Birth-Death Process Augmented Langevin Dynamics

Omar Valsson

Work with Benjamin Pampel, Simon Holbach, and Lisa Hartung

UMD Brin MRC - Rare Event
March 2, 2023

WWW.valsson.info
@OmarValsson
omar.valsson@unt.edu

University of North Texas, Denton, TX, USA
COLEEGE OF SCIENCE

Review of Enhanced Sampling Methods

Enhanced Sampling Methods for Molecular Dynamics Simulations [Article v1.0]

Jérôme Hénin ${ }^{1 *}$, Tony Lelièvre ${ }^{2 *}$, Michael R. Shirts $3^{3 *}$, Omar Valsson ${ }^{4,5^{*}}$, Lucie Delemotte ${ }^{6 \star}$
${ }^{1}$ Université Paris Cité, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Paris, France: ${ }^{2}$ CERMICS, Ecole des Ponts ParisTech, INRIA, Marne-la-Vallée, France ${ }^{3}$ Department of Chemical and Biological Engineering, University of Colorado Boulder Boulder, CO, USA, 80309: ${ }^{4}$ University of North Texas, Department of Chemistry, Denton TX, USA: ${ }^{5}$ Max Planck Institute for Polymer Research, Mainz, Germany; ${ }^{6}$ KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden

Abstract Enhanced sampling algorithms have emerged as powerful methods to extend the utility of molecular dynamics simulations and allow the sampling of larger portions of the configuration space of complex systems in a given amount of simulation time. This review aims to present the unifying principles of and differences between many of the computational methods currently used for enhanced sampling in molecular simulations of biomolecules, soft matter and molecular crystals. In fact, despite the apparent abundance and divergence of such methods, the principles at their core can be boiled down to a relatively limited number of statistical and physical concepts. To enable comparisons, the various methods are introduced using similar terminology and notation. We then illustrate in which ways many different methods combine features of a relatively small number of the same enhanced sampling concepts. This review is intended for scientists with an understanding of the basics of molecular dynamics simulations and statistical physics who want a deeper understanding of the ideas that underile various enhanced sampling methods and the) remp ing methods they contine in in therare.

Editors' Suggestion

Sampling rare event energy landscapes via birth-death augmented dynamics
Benjamin Pampel, Simon Holbach, Lisa Hartung, and Omar Valsson
Phys. Rev. E 107, 024141 (2023) - Published 28 February 2023

A common problem in simulations of complex systems is the
separation of metastable states by high barriers that hinder transitions between the states. The authors address this by adapting a sampling algorithm that includes a birth-death process, and show that this scheme can efficiently sample energy landscapes with such barriers.

Show Abstract 4

Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)

Numerical Implementation

Dr. Benjamin Pampel

Dr. Lisa Hartung

Dr. Simon Holbach

Deutsche
orschungsgemeinschaft

Overdamped Langevin Dynamics

Overdamped Langevin equation that describe the time evolution of the motion of a particle in an energy landscape $U(x): \mathbb{R}^{d} \rightarrow \mathbb{R}$ that we want to sample
$D>0$: diffusion coefficient

$$
\mathrm{d} x(t)=-D \beta \nabla U(x(t)) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} W(t)
$$

$$
\beta=1 / k_{\mathrm{B}} T
$$

W : standard Brownian motion on \mathbb{R}
$x(0) \in \mathbb{R}^{d}$: initial conditions

The solution $X=(x(t))_{t \geq 0}$ is a Markov process that has a unique stationary (Boltzmann) distribution

$$
\pi(x)=Z^{-1} e^{-\beta U(x)} \quad \text { Normalization constant } Z \text { generally unknown }
$$

Can simulate in practice using the Euler-Maruyama algorithm
Gives a trajectory that samples $\pi(x)$ (given infinite time)

Overdamped Langevin Dynamics

Overdamped Langevin equation that describe the time evolution of the motion of a particle in an energy landscape $U(x): \mathbb{R}^{d} \rightarrow \mathbb{R}$ that we want to sample
$D>0$: diffusion coefficient

$$
\mathrm{d} x(t)=-D \beta \nabla U(x(t)) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} W(t)
$$

$$
\beta=1 / k_{\mathrm{B}} T
$$

W : standard Brownian motion on \mathbb{R}
$x(0) \in \mathbb{R}^{d}$: initial conditions

The solution $X=(x(t))_{t \geq 0}$ is a Markov process that has a unique stationary (Boltzmann) distribution

$$
\pi(x)=Z^{-1} e^{-\beta U(x)} \quad \text { Normalization constant } Z \text { generally unknown }
$$

Can simulate in practice using the Euler-Maruyama algorithm
Gives a trajectory that samples $\pi(x)$ (given infinite time)

Overdamped Langevin Dynamics

Overdamped Langevin equation that describe the time evolution of the motion of a particle in an energy landscape $U(x): \mathbb{R}^{d} \rightarrow \mathbb{R}$ that we want to sample
$D>0$: diffusion coefficient

$$
\mathrm{d} x(t)=-D \beta \nabla U(x(t)) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} W(t)
$$

$$
\beta=1 / k_{\mathrm{B}} T
$$

W : standard Brownian motion on \mathbb{R}
$x(0) \in \mathbb{R}^{d}$: initial conditions

The solution $X=(x(t))_{t \geq 0}$ is a Markov process that has a unique stationary (Boltzmann) distribution

$$
\pi(x)=Z^{-1} e^{-\beta U(x)} \quad \text { Normalization constant } Z \text { generally unknown }
$$

Can simulate in practice using the Euler-Maruyama algorithm
Gives a trajectory that samples $\pi(x)$ (given infinite time)
Can use multiple independent simulations to improve sampling statistics

Fokker-Planck Equation

The overdamped Langevin equation is the probabilistic counterpart of the Fokker-Planck equation that describes the time evolution of probability density $\rho_{t}(x)$

$$
\partial_{t} \rho_{t}(x)=L^{*} \rho_{t}(x) \quad \text { with } \quad L^{*} \rho_{t}(x)=D \nabla \cdot\left(\nabla \rho_{t}(x)+\beta \rho_{t}(x) \nabla U(x)\right)
$$

With the distribution $\pi(x)$ as the stationary solution, $L^{*} \pi(x)=0$

Fokker-Planck Equation

The overdamped Langevin equation is the probabilistic counterpart of the Fokker-Planck equation that describes the time evolution of probability density $\rho_{t}(x)$

$$
\partial_{t} \rho_{t}(x)=L^{*} \rho_{t}(x) \quad \text { with } \quad L^{*} \rho_{t}(x)=D \nabla \cdot\left(\nabla \rho_{t}(x)+\beta \rho_{t}(x) \nabla U(x)\right)
$$

With the distribution $\pi(x)$ as the stationary solution, $L^{*} \pi(x)=0$

Particle picture to solve the Fokker-Planck: consider an ensemble of N independent Langevin dynamics simulations
Empirical particle distribution $\quad \mu_{t}^{N}(x)=\frac{1}{N} \sum_{k}^{N} \delta_{x_{k}(t)}$
Smoothed estimate by employing a convolution with a (Gaussian) kernel, i.e., kernel density estimation

$$
K^{*} \mu_{t}^{N}(x)=\frac{1}{N} \sum_{k}^{N} K\left(x-x_{k}(t)\right)
$$

Should approximate the stationary distribution in the long time limit $\lim _{t \rightarrow \infty} K^{*} \mu_{t}^{N} \approx \pi(x)$

Ad-Hoc Birth-Death Events

Can we do better?
Idea: Improve the agreement with the desired equilibrium distribution by killing and duplicating particle (i.e. simulations)

Position

Position

We address here how we can do this in a theoretically sound way
Original idea from [1], but an issue with obtaining correct sampling that we fix in [2]

Ad-Hoc Birth-Death Events

Can we do better?
Idea: Improve the agreement with the desired equilibrium distribution by killing and duplicating particle (i.e. simulations)

[1] Lu, Lu, and Nolen, arXiv:1905.09863
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)

Fokker-Planck-Birth-Death Equation

Consider a non-linear and non-local Fokker-Planck-Birth-Death (FP-BD) equation [1]

$$
\partial_{t} \rho_{t}(x)=L^{*} \rho_{t}(x)-\tau_{\alpha} \alpha_{\pi}\left(\rho_{t}\right) \rho_{t}
$$

Where we have added a so-called birth-death term $\alpha_{\pi}\left(\rho_{t}\right)$

$$
\alpha_{\pi}\left(\rho_{t}\right)=\log \frac{\rho_{t}(x)}{\pi(x)}-\int \log \left(\frac{\rho_{t}(x)}{\pi(y)}\right) \rho_{t}(x) \mathrm{d} y
$$

$\tau_{\alpha}>0$: birth-death rate with units 1 /time, can assume $\tau_{\alpha}=1$

First term: Increase $\rho_{t}(x)$ at x if smaller than $\pi(x)$, decrease if larger Second term: Preserves normalization

Fokker-Planck-Birth-Death Equation

Consider a non-linear and non-local Fokker-Planck-Birth-Death (FP-BD) equation [1]

$$
\partial_{t} \rho_{t}(x)=L^{*} \rho_{t}(x)-\tau_{\alpha} \alpha_{\pi}\left(\rho_{t}\right) \rho_{t}
$$

$\tau_{\alpha}>0$: birth-death rate with units $1 /$ time, can assume $\tau_{\alpha}=1$

Where we have added a so-called birth-death term $\alpha_{\pi}\left(\rho_{t}\right)$

$$
\alpha_{\pi}\left(\rho_{t}\right)=\log \frac{\rho_{t}(x)}{\pi(x)}-\int \log \left(\frac{\rho_{t}(x)}{\pi(y)}\right) \rho_{t}(x) \mathrm{d} y
$$

First term: Increase $\rho_{t}(x)$ at x if smaller than $\pi(x)$, decrease if larger Second term: Preserves normalization

Where $\alpha_{\pi}(\pi)=0$ so $\pi(x)$ remains the stationary solution, i.e., adding the birth-death terms does not change the equilibrium

The effect of the birth-death term is to allow for non-local moves of the probability density (with normalization preserved)

Can be shown that the speed of convergence is independent of barrier heights

[1] Lu, Lu, and Nolen, arXiv:1905.09863
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)

Interacting Particle Picture of the Fokker-Planck-Birth-Death Equation

Assume N particles with positions $x_{1}(t), \ldots, x_{N}(t) \in \mathbb{R}^{d}$ at time $t \geq 0$ and empirical particle distribution $\mu_{t}^{N}(x)=\frac{1}{N} \sum_{k}^{N} \delta_{x_{k}(t)}$
Replace the birth-death term $\alpha_{\pi}\left(\rho_{t}\right)$ with a smoothened approximation $\Lambda_{\pi}\left(\rho_{t}\right)$

$$
\partial_{t} \rho_{t}(x)=L^{*} \rho_{t}(x)-\tau_{\alpha} \Lambda_{\pi}\left(\rho_{t}\right) \rho_{t}
$$

Leads to the following dynamics:
Each particle diffuses independently according to the overdamped Langevin dynamics
Each particle has an independent exponential clock that strikes with rate $\tau_{\alpha}\left|\Lambda\left(\mu_{t}^{N}\right)\left(x_{i}(t)\right)\right|$

- $\Lambda\left(\mu_{t}^{N}\right)\left(x_{i}(t)\right)>0$: kill particle i (and duplicate random selected other)
- $\Lambda\left(\mu_{t}^{N}\right)\left(x_{i}(t)\right)<0$, duplicate particle i (and kill random selected other)

Thus, this birth-death dynamics will help distribute the particles according to $\pi(x)$ and speed up convergence of $\mu_{t}^{N}(x)$ to $\pi(x)$
We are left with selecting the smoothened approximation $\Lambda_{\pi}\left(\rho_{t}\right)$

Interacting Particle Picture of the Fokker-Planck-Birth-Death-Equation

Few possible choices for the smoothened approximation $\Lambda_{\pi}\left(\rho_{t}\right)$

All feature a convolution with a Gaussian kernel $K(x)$ with covariance matrix $\mathbf{\Sigma}$

$$
K^{*} f(x)=\int K(x-y) f(y) d y \quad \text { with } \quad K(x)=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{x^{\top} \boldsymbol{\Sigma}^{-1} x}{2}\right), \quad x \in \mathbb{R}^{d},
$$

The original choice from [1]

$$
\Lambda^{0}\left(\mu_{t}^{N}\right)=\log \frac{K^{*} \mu_{t}^{N}(x)}{\pi(x)}-\int \log \left(\frac{K^{*} \mu_{t}^{N}(y)}{\pi(y)}\right) \mu_{t}^{N}(y) \mathrm{d} y \quad \text { Compare the smoothed particle density with } \pi(x)
$$

But, one crucial shortcoming, $\Lambda^{0}(\pi) \neq 0$, so $\pi(x)$ is not a stationary solution to approximate FP-BD equation In practice: converges to the wrong distribution

Could solve this by adding a correction term [2]: $\Lambda^{\text {ad }}(f)=\Lambda^{0}(f)-\Lambda^{0}(\pi)$, but not convenient for mathematical analysis

Interacting Particle Picture of the Fokker-Planck-Birth-Death-Equation

Few possible choices for the smoothened approximation $\Lambda_{\pi}\left(\rho_{t}\right)$

All feature a convolution with a Gaussian kernel $K(x)$ with covariance matrix $\mathbf{\Sigma}$

$$
K^{*} f(x)=\int K(x-y) f(y) d y \quad \text { with } \quad K(x)=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{x^{\top} \boldsymbol{\Sigma}^{-1} x}{2}\right), \quad x \in \mathbb{R}^{d},
$$

Our choice, a multiplicative term (new contribution introduced in [2])

$$
\Lambda^{\mathrm{mu}}\left(\mu_{t}^{N}\right)=\log \frac{K^{*} \mu_{t}^{N}(x)}{K^{*} \pi(x)}-\int \log \left(\frac{K^{*} \mu_{t}^{N}(y)}{K^{*} \pi(y)}\right) \mu_{t}^{N}(y) \mathrm{d} y \quad \begin{aligned}
& \text { Compare the smoothed particle density with } K^{*} \pi(x) \\
& \text { the convoluted } \pi(x)
\end{aligned}
$$

Cleary, $\Lambda^{\mathrm{mu}}(\pi)=0$

Work with $\Lambda^{\mathrm{mu}}\left(\mu_{t}^{N}\right)$, unless stated otherwise

Interacting Particle Picture: Mathematical Properties

If we formally take $\mathbf{\Sigma}=\mathbf{0}$ and interpret $K(x)$ as a Dirac delta function
$=>$ all approximation $\Lambda^{0}(\pi), \Lambda^{\text {ad }}(\pi)$, and $\Lambda^{\mathrm{mu}}(\pi)$ correspond to the exact term $\alpha(\pi)$

Can proof that empirical particle distribution $\mu_{t}^{N}(x)$ convergences weakly to the solution $\rho_{t}(x)$ of the approximate Fokker-Planck-Birth-Death equation when $N \rightarrow \infty$

Gives proper meaning to the idea that this interacting particle system is the probabilistic counter-part of the Fokker-Planck-Birth-Death equation.

If we increase the magnitude of the Gaussian covariance matrix, $|\Sigma| \rightarrow \infty$, we turn off the effect of the birth-death term

See [1] and [2] for further mathematical properties and proofs

Interacting Particle Picture: Implementation

Can write out the explicit birth-death term in the particle-based picture

$$
\Lambda^{\mathrm{mu}}\left(\mu_{t}^{N}\right)\left(x_{i}\right)=\log \left(\frac{1}{N} \sum_{j=1}^{N} K\left(x_{i}-x_{j}\right)\right)-\log \left(K^{*} \pi\left(x_{i}\right)\right)-\frac{1}{N} \sum_{k=1}^{N}\left[\log \left(\frac{1}{N} \sum_{j=1}^{N} K\left(x_{k}-x_{j}\right)\right)-\log \left(K^{*} \pi\left(x_{k}\right)\right)\right]
$$

Employ diagonal Gaussian kernels with bandwidths $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{d}\right)$
Note: do not need to know the normalization of $\pi(x)$

$$
K(x)=\frac{1}{(2 \pi)^{d / 2} \prod_{i=1}^{d} \sigma_{i}} \exp \left(-\sum_{i=1}^{d}\left(\frac{x^{(i)}}{\sqrt{2} \sigma_{i}}\right)^{2}\right)
$$

Duplicate/kill particles with probability

$$
\Lambda_{i}:=\Lambda^{\mathrm{mu}}\left(\mu_{t}^{N}\right)\left(x_{i}\right) \text { Langevin time step }
$$

$$
q_{i}=1-\exp \left(-\tau_{\alpha}\left|\Lambda_{i}\right| M \theta\right)
$$

M : Number of Langevin steps between attempting birth/death moves
θ : Langevin time step

Interacting Particle Picture: Implementation

Algorithm 1: Birth-death augmented Langevin

 dynamics
Input:

- Potential U (and temperature T) corresponding to the equilibrium distribution π
- Langevin solver $L(X, P, U, \theta)$ with corresponding parameters
- Calculation rule for smoothed birth-death term Λ using Gaussian kernel K with bandwidths σ
- Rate factor τ_{α}
- Langevin time step θ
- Number of Langevin steps J
- Number of Langevin steps between birth-death attempts M
- N particles with initial positions $X=\left\{x_{i}\right\}_{i=1}^{N}$ and momenta $P=\left\{p_{i}\right\}_{i=1}^{N}$
Output:
- Set of particles whose empirical measure approximates π

Available on Github: github.com/bpampel/bdld

```
for }t\leftarrow1\mathrm{ to }J\mathrm{ do
```

for }t\leftarrow1\mathrm{ to }J\mathrm{ do
update X and P by Langevin solver L}L(X,P,U,0
update X and P by Langevin solver L}L(X,P,U,0
if (t mod M) = 0 then
if (t mod M) = 0 then
Calculate }\Lambda\mathrm{ for all particles
Calculate }\Lambda\mathrm{ for all particles
Draw N independent random numbers {ri}\mp@subsup{}}{i=1}{N
Draw N independent random numbers {ri}\mp@subsup{}}{i=1}{N
uniformly from [0, 1)
uniformly from [0, 1)
Make list }\zeta\mathrm{ of indices }i\mathrm{ for which
Make list }\zeta\mathrm{ of indices }i\mathrm{ for which
ri}\leq\mp@subsup{q}{i}{}=1-\operatorname{exp}(-\mp@subsup{\tau}{\alpha}{}|\mp@subsup{\Lambda}{i}{}|M0
ri}\leq\mp@subsup{q}{i}{}=1-\operatorname{exp}(-\mp@subsup{\tau}{\alpha}{}|\mp@subsup{\Lambda}{i}{}|M0
Shuffle }\zeta\mathrm{ randomly
Shuffle }\zeta\mathrm{ randomly
foreach }i\in\mp@subsup{\zeta}{}{\mathrm{ a }}\mathrm{ do
foreach }i\in\mp@subsup{\zeta}{}{\mathrm{ a }}\mathrm{ do
Select particle j uniformly from all other
Select particle j uniformly from all other
particles
particles
if }\mp@subsup{\Lambda}{i}{}>0\mathrm{ then
if }\mp@subsup{\Lambda}{i}{}>0\mathrm{ then
xi}\leftarrow\mp@subsup{x}{j}{};\mp@subsup{p}{i}{}\leftarrow\mp@subsup{p}{j}{
xi}\leftarrow\mp@subsup{x}{j}{};\mp@subsup{p}{i}{}\leftarrow\mp@subsup{p}{j}{
else if }\mp@subsup{\Lambda}{i}{}<0\mathrm{ then
else if }\mp@subsup{\Lambda}{i}{}<0\mathrm{ then
\mp@subsup{x}{j}{}\leftarrow\mp@subsup{x}{i}{};\mp@subsup{p}{j}{}\leftarrow\mp@subsup{p}{i}{}
\mp@subsup{x}{j}{}\leftarrow\mp@subsup{x}{i}{};\mp@subsup{p}{j}{}\leftarrow\mp@subsup{p}{i}{}
end if
end if
end foreach
end foreach
end if
end if
end for

```
end for
```


Example of Behavior

Without birth/death moves (i.e., pure Langevin dynamics)

With birth/death moves

$$
N=100 \text { particles in both cases, only show two }
$$

Example of Behavior

Without birth/death moves (i.e., pure Langevin dynamics)

With birth/death moves

$$
N=100 \text { particles in both cases, only show two }
$$

Applications

Will explore the performance of this birth/death augmented Langevin dynamics scheme and the impact of various parameters by using prototypical rare event energy landscapes

Start with a two state model with a moderately high barrier ($\sim 4 \mathrm{kB}_{\mathrm{B}}$)

Choice of the Approximation

Original approximation from [1]
Multiplicative approximation from our work [2]

$$
\Lambda^{0}\left(\mu_{t}^{N}\right)=\log \frac{K^{*} \mu_{t}^{N}(x)}{\pi(x)}-\int \log \left(\frac{K^{*} \mu_{t}^{N}(y)}{\pi(y)}\right) \mu_{t}^{N}(y) \mathrm{d} y \quad \quad \Lambda^{\mathrm{mu}}\left(\mu_{t}^{N}\right)=\log \frac{K^{*} \mu_{t}^{N}(x)}{K^{*} \pi(x)}-\int \log \left(\frac{K^{*} \mu_{t}^{N}(y)}{K^{*} \pi(y)}\right) \mu_{t}^{N}(y) \mathrm{d} y
$$

Original approximation leads to incorrect sampling and results as expected

Original approximation leads to under-sampling of barrier region and too high barrier estimates

Obtain good sampling with new multiplicative birth/death term $\Lambda^{\mathrm{mu}}\left(\mu_{t}^{N}\right)$ as long as above a certain critical bandwidth

Speed of Equilibration

100 Particles

- Start far from equilibrium with 10 in left state and 90 in right state
- Should be 63 in left state and 37 in right state on average in equilibrium

Reach equilibrium orders of magnitude faster with the birth/death scheme
Choice of approximation has very little effect on the equilibrium properties

Number of Particles and the Critical Bandwidth

Critical bandwidth: the lowest value of for which the KL divergence is below 10-6 Increasing the number of particles leads to lower value of the critical bandwidth

Effect of Increasing the Bandwidth

Gradually turns off the birth/death moves

Effect of the Birth-Death Stride M

Effect of the Birth-Death Stride M

21 No significant difference in results as long as the percentage of accepted birth/death moves below $5-10 \%$ ($M=1000$ in this case)

More General Dynamics

Normally interested in the more general case of underdamped Langevin dynamics (or other stochastic dynamics)

$$
\begin{array}{ll}
\mathrm{d} x(t)=\frac{p(t)}{m} \mathrm{~d} t & \begin{array}{l}
\text { The corresponding Fokker-Planck equation } \\
\text { depends on both position } x \text { and momentum } p
\end{array} \\
\mathrm{~d} p(t)=-\nabla U(x(t)) \mathrm{d} t-\gamma p(t) \mathrm{d} t+\sqrt{\frac{2 m \gamma}{\beta}} \mathrm{~d} W(t), & \rho_{t}(x, p) \neq \rho_{t}(x) \cdot \rho_{t}(p)
\end{array}
$$

Can be simulated using the Langevin Algorithm from Bussi and Parrinello, PRE 2007 with $\gamma=10$
Do the same as before and a birth/death term that depends only on the position: works fine

The average time between birth-death moves is 6000 Langevin steps, or 10 times the decorrelation time of the momentum

Speed of Equilibration is Independent of Barrier Height

Higher-Dimensions: 2D Wolfe-Quapp Potential

1000 Particles - Underdamped Langevin Dynamics with $\gamma=10$

Higher-Dimensions: 2D Wolfe-Quapp Potential

100 Particles - Underdamped Langevin Dynamics with $\gamma=10$

Higher-Dimensions: Scaled 2D Wolfe-Quapp Potential

Effect of the Rate Factor τ_{α}

Fokker-Planck-Brith-Death equation

$$
\partial_{t} \rho_{t}=L^{*} \rho_{t}-\tau_{\alpha} \alpha_{\pi}\left(\rho_{t}\right) \rho_{t}
$$

Brith-Death probabilities

$$
q_{i}=1-\exp \left(-\tau_{\alpha}\left|\Lambda_{i}\right| M \theta\right),
$$

The rate factor modulates the speed of equilibration, as expected

Still Very Early On: Issues

What about higher-dimensional cases and atomistic simulations? How far can we push this?

- Main issue is the estimation of the particle density
- Can we use some approximations?
- Probably not the way to go!
- => Perform the birth/death in a lower-dimensional subspace (i.e., CVs)

Samples the equilibrium Boltzmann distribution, similar as parallel-tempering

- Per se not an issue
- But, can be difficult to describe transition states and low populated states
- Can lose particles from a metastable state

Algorithm can only populate metastable states that have a walker

- Only "exploitation" mode and not "exploration" mode
- Need to know states in advance

Still Very Early On: Outlook and Next Steps

Perform the birth/death step only a subspace of some CVs

- How does the method work in this case?
- Birth/death dynamics on a free energy landscape that is a-priori unknown
- Need to estimate the energy landscape on the fly

Combine with a CV-based enhanced sampling method => the long time goal

- Should help with many of the issues
- Add "exploration" mode to the combined method
- Better sample transition states and higher lying regions

Improve performance of multiple walker simulations - Our initial motivation

- Related Idea: Lelièvre, Rousset, \& Stoltz, JCP 2007

Shared bias potential $V(\mathbf{s})$

Acknowledgements

Numerical Implementation

Dr. Benjamin Pampel
Max Planck Institute for Polymer Research

Mathematical analysis

Funding - Project A10 within the Collaborative Research Center TRR 146: "Multiscale Simulation Methods for Soft Matter Systems"
Funded by

Deutsche
Forschungsgemeinschaft
German Research Foundation

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

JG U

johannes GUTENBERG
UNIVERSITÄT MAINz

Other Recent Publications

Multiscale Reweighted Stochastic EmbeddingA
and
Reweighted Manifold Learning ${ }^{B}$
For Learning CV from Biased Simulation Data

A J. Phys. Chem. A, 125, 6286 (2021)
B J. Chem. Theory Comput. 18, 7179 (2022)

With Jakub Rydzewski, Nicolaus Copernicus University, Poland

Wavelet (Localized) Based Bias Potentials for Variationally Enhanced Sampling
J. Chem. Theory Comput. 18, 4127-4141 (2022)

The Crucial Role of Solvation Forces in the Steric Stabilization of Nanoplatelets

Nano Lett. 22, 9847-9853 (2022)

Nanning Petersen

