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Overdamped Langevin Dynamics

Overdamped Langevin equation that describe the time evolution of the motion 
of a particle in an energy landscape  that we want to sampleU(x) : ℝd → ℝ

dx(t) = − Dβ∇U(x(t)) dt + 2D dW(t)
standard Brownian motion on W : ℝ

diffusion coefficientD > 0:

β = 1/kBT

 : initial conditions x(0) ∈ ℝd

The solution  is a Markov process that has a unique stationary (Boltzmann) distributionX = (x(t))t≥0

π(x) = Z−1e−βU(x) Normalization constant  generally unknownZ

Can simulate in practice using the Euler-Maruyama algorithm 

Gives a trajectory that samples  (given infinite time)π(x)
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Overdamped Langevin Dynamics

Overdamped Langevin equation that describe the time evolution of the motion 
of a particle in an energy landscape  that we want to sampleU(x) : ℝd → ℝ

dx(t) = − Dβ∇U(x(t)) dt + 2D dW(t)
standard Brownian motion on W : ℝ

diffusion coefficientD > 0:

β = 1/kBT

 : initial conditions x(0) ∈ ℝd

The solution  is a Markov process that has a unique stationary (Boltzmann) distributionX = (x(t))t≥0

π(x) = Z−1e−βU(x) Normalization constant  generally unknownZ

Can simulate in practice using the Euler-Maruyama algorithm 

Gives a trajectory that samples  (given infinite time)π(x)

Can use multiple independent simulations to improve sampling statistics
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Fokker-Planck Equation

The overdamped Langevin equation is the probabilistic counterpart of the Fokker-Planck equation 
that describes the time evolution of probability density ρt(x)

L*ρt(x) = D∇ ⋅ (∇ρt(x) + β ρt(x)∇U(x))

With the distribution  as the stationary solution, π(x) L*π(x) = 0

∂t ρt(x) = L*ρt(x) with 
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Fokker-Planck Equation

The overdamped Langevin equation is the probabilistic counterpart of the Fokker-Planck equation 
that describes the time evolution of probability density ρt(x)

L*ρt(x) = D∇ ⋅ (∇ρt(x) + β ρt(x)∇U(x))

With the distribution  as the stationary solution, π(x) L*π(x) = 0

∂t ρt(x) = L*ρt(x) with 

μN
t (x) =

1
N

N

∑
k

δxk(t)Empirical particle distribution

Particle picture to solve the Fokker-Planck: consider an ensemble of  independent Langevin dynamics simulationsN

K * μN
t (x) =

1
N

N

∑
k

K(x − xk(t))

lim
t→∞

K * μN
t ≈ π(x)Should approximate the stationary 

distribution in the long time limit 
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Smoothed estimate by employing a convolution with a 
(Gaussian) kernel, i.e., kernel density estimation
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Ad-Hoc Birth-Death Events

Idea: Improve the agreement with the desired equilibrium distribution by killing and duplicating particle (i.e. simulations)

We address here how we can do this in a theoretically sound way

Smoothened particle distribution ρ
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[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)

Original idea from [1], but an issue with obtaining correct sampling that we fix in [2]

Can we do better? 



7

Ad-Hoc Birth-Death Events

Idea: Improve the agreement with the desired equilibrium distribution by killing and duplicating particle (i.e. simulations)

We address here how we can do this in a theoretically sound way

Smoothened particle distribution ρ
Desired equilibrium distribution π

Position

b

P
ro

b
a
b
ili

ty

Position

a

duplicate

particle

green

kill

particle

red

[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)

Original idea from [1], but an issue with obtaining correct sampling that we fix in [2]

Can we do better? 

Related works 
- Lindsey, Weare, & Zhang, SIAM ASA J Uncertain Quantification 2022 
- Rotskoff, Jelassi, Bruna, and Vanden-Eijnden, ICML/PMLR 2019 
- Goodman & Weare, Comm. App. Math. And Comp. Sci. 2010 
- Grassberger CPC 2002 
- ….. 
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Fokker-Planck-Birth-Death Equation

Consider a non-linear and non-local Fokker-Planck-Birth-Death (FP-BD) equation [1] 

∂t ρt(x) = L*ρt(x) − τααπ(ρt) ρt

Where we have added a so-called birth-death term απ(ρt)

birth-death rate with units 1/time, can assume τα > 0: τα = 1

απ(ρt) = log
ρt(x)
π(x)

− ∫ log ( ρt(x)
π(y) ) ρt(x) dy

First term: Increase  at  if smaller than , decrease if larger 

Second term: Preserves normalization 

ρt(x) x π(x)

[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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Second term: Preserves normalization 

ρt(x) x π(x)

[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)

The effect of the birth-death term is to allow for non-local moves 
of the probability density (with normalization preserved)

Where  so  remains the stationary solution,  
i.e., adding the birth-death terms does not change the equilibrium 

απ(π) = 0 π(x)
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Now, the question is, how can we solve this equation? Can we 
define a probabilistic counterpart to this FB-BD equation?

Can be shown that the speed of convergence is 
independent of barrier heights 
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Interacting Particle Picture of the Fokker-Planck-Birth-Death Equation

Replace the birth-death term  with a smoothened approximation απ(ρt) Λπ(ρt)

∂t ρt(x) = L*ρt(x) − ταΛπ(ρt) ρt

Assume  particles with positions   at time  and empirical particle distribution N x1(t), …, xN(t) ∈ ℝd t ≥ 0 μN
t (x) =

1
N

N

∑
k

δxk(t)

Leads to the following dynamics:  

Each particle diffuses independently according to the overdamped Langevin dynamics 

Each particle has an independent exponential clock that strikes with rate  

• : kill particle  (and duplicate random selected other) 

• , duplicate particle  (and kill random selected other) 

τα |Λ(μN
t )(xi(t)) |

Λ(μN
t )(xi(t)) > 0 i

Λ(μN
t )(xi(t)) < 0 i

total particle number  is preservedN

Thus, this birth-death dynamics will help distribute the particles according to  and speed up convergence of  to π(x) μN
t (x) π(x)

We are left with selecting the smoothened approximation Λπ(ρt)

[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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Interacting Particle Picture of the Fokker-Planck-Birth-Death-Equation

Few possible choices for the smoothened approximation Λπ(ρt)

All feature a convolution with a Gaussian kernel  with covariance matrix K(x) Σ

K(x) =
1

(2π)d/2|Σ|1/2
exp (−

x⊤Σ−1x
2 ), x ∈ ℝd,K * f(x) = ∫ K(x − y) f(y) dy with

Λ0(μN
t ) = log

K * μN
t (x)

π(x)
− ∫ log ( K * μN

t (y)
π(y) ) μN

t (y) dy

The original choice from [1]

Compare the smoothed particle density with π(x)

But, one crucial shortcoming, , so  is not a stationary solution to approximate FP-BD equation  
  In practice: converges to the wrong distribution 

Λ0(π) ≠ 0 π(x)

Could solve this by adding a correction term [2]:  , but not convenient for mathematical analysis Λad( f ) = Λ0( f ) − Λ0(π)

[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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Interacting Particle Picture of the Fokker-Planck-Birth-Death-Equation

Few possible choices for the smoothened approximation Λπ(ρt)

All feature a convolution with a Gaussian kernel  with covariance matrix  K(x) Σ

K(x) =
1

(2π)d/2|Σ|1/2
exp (−

x⊤Σ−1x
2 ), x ∈ ℝd,K * f(x) = ∫ K(x − y) f(y) dy with

Λmu(μN
t ) = log

K * μN
t (x)

K * π(x)
− ∫ log ( K * μN

t (y)
K * π(y) ) μN

t (y) dy

Our choice, a multiplicative term (new contribution introduced in [2])

Compare the smoothed particle density with , 
the convoluted 

K * π(x)
π(x)

Cleary, Λmu(π) = 0

Work with , unless stated otherwiseΛmu(μN
t )

[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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Interacting Particle Picture: Mathematical Properties

If we formally take  and interpret  as a Dirac delta function 
=> all approximation , , and  correspond to the exact term 

Σ = 0 K(x)
Λ0(π) Λad(π) Λmu(π) α(π)

Can proof that empirical particle distribution  convergences weakly to the solution  
of the approximate Fokker-Planck-Birth-Death equation when 

μN
t (x) ρt(x)

N → ∞

Gives proper meaning to the idea that this interacting particle system is the 
probabilistic counter-part of the Fokker-Planck-Birth-Death equation.

If we increase the magnitude of the Gaussian covariance matrix, , we 
turn off the effect of the birth-death term 

|Σ | → ∞

See [1] and [2] for further mathematical properties and proofs 

[1] Lu, Lu, and Nolen, arXiv:1905.09863 
[2] Pampel, Holbach, Hartung, Valsson, Phys Rev E 107, 024141 (2023)
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Interacting Particle Picture: Implementation

Λmu(μN
t )(xi) = log

1
N

N

∑
j=1

K(xi − xj) − log(K * π(xi)) −
1
N

N

∑
k=1

log
1
N

N

∑
j=1

K(xk − xj) − log(K * π(xk)) .

Can write out the explicit birth-death term in the particle-based picture

K(x) =
1

(2π)d/2∏d
i=1 σi

exp −
d

∑
i=1 ( x(i)

2σi )
2

Employ diagonal Gaussian kernels with bandwidths σ = (σ1, …, σd)

qi = 1 − exp (−τα|Λi|Mθ)

Note: do not need to know the normalization of π(x)

Duplicate/kill particles with probability  

 Langevin time step θ :

 Number of Langevin steps between attempting birth/death movesM :

 Langevin time step Λi := Λmu(μN
t )(xi)
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Interacting Particle Picture: Implementation

Implemented in a Python code  
Available on Github: github.com/bpampel/bdld 

http://github.com/bpampel/bdld
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Example of Behavior

Without birth/death moves (i.e., pure Langevin dynamics) With birth/death moves

 particles in both cases, only show two N = 100
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Applications
Will explore the performance of this birth/death augmented Langevin dynamics scheme and the impact 
of various parameters by using prototypical rare event energy landscapes  

Unless otherwise stated 
  Employ  particles 
  Euler-Maruyama algorithm to solve the overdamped Langevin dynamics  
   Langevin steps between trying birth/death moves

N = 100

M = 100

Start with a two state model with a moderately high barrier (~ 4 kBT)

P(x ∈ BR) ≈ 0.37P(x ∈ BL) ≈ 0.63
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) [
k B

T]

BL
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Position x 
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Choice of the Approximation

100 Particles - overdamped Langevin Dynamics

Λ0(μN
t ) = log

K * μN
t (x)

π(x)
− ∫ log ( K * μN

t (y)
π(y) ) μN

t (y) dy Λmu(μN
t ) = log

K * μN
t (x)

K * π(x)
− ∫ log ( K * μN

t (y)
K * π(y) ) μN

t (y) dy

Original approximation from [1] Multiplicative approximation from our work [2]
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Speed of Equilibration

100 Particles - Underdamped Langevin Dynamics with γ = 10

100 Particles 
• Start far from equilibrium with 10 in left state and 90 in right state 
• Should be 63 in left state and 37 in right state on average in equilibrium 

Reach equilibrium orders of magnitude faster with the birth/death scheme

Choice of approximation has very little effect on the equilibrium properties 
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Number of Particles and the Critical Bandwidth

Overdamped Langevin Dynamics

Increasing the number of particles leads to lower value of the critical bandwidth 
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Effect of Increasing the Bandwidth 

Overdamped Langevin Dynamics

Gradually turns off the birth/death moves 
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Effect of the Birth-Death Stride M
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Want to avoid doing the birth/death step at every Langevin step
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More General Dynamics
Normally interested in the more general case of underdamped Langevin dynamics (or other stochastic dynamics)

dx(t) =
p(t)
m

dt

dp(t) = − ∇U(x(t))dt − γp(t)dt +
2mγ

β
dW(t),

Do the same as before and a birth/death term that depends only on 
the position: works fine

Can be simulated using the Langevin Algorithm from Bussi and Parrinello, PRE 2007 with γ = 10

The corresponding Fokker-Planck equation 
depends on both position  and momentum x p
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ρt(x, p) ≠ ρt(x) ⋅ ρt(p)

The average time between birth-death moves is 6000 Langevin steps, or 10 times the decorrelation time of the momentum
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Speed of Equilibration is Independent of Barrier Height

Potentials with increased barrier height, but preserved 
population of left/right states

100 Particles - Underdamped Langevin Dynamics with γ = 10
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Higher-Dimensions: 2D Wolfe-Quapp Potential

1000 Particles - Underdamped Langevin Dynamics with γ = 10
Number of Langevin Steps
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Higher-Dimensions: 2D Wolfe-Quapp Potential

100 Particles - Underdamped Langevin Dynamics with γ = 10
Number of Langevin Steps
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Higher-Dimensions: Scaled 2D Wolfe-Quapp Potential

1000 Particles - Underdamped Langevin Dynamics with γ = 10
Number of Langevin Steps
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Effect of the Rate Factor τα
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∂tρt = L*ρt−τααπ(ρt)ρt,

qi = 1 − exp (−τα|Λi|Mθ),

Fokker-Planck-Brith-Death equation 

Brith-Death probabilities

The rate factor modulates the speed of equilibration, as expected 
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Still Very Early On: Issues

What about higher-dimensional cases and atomistic simulations? How far can we push this?  
- Main issue is the estimation of the particle density 
- Can we use some approximations? 
- Probably not the way to go!  
- => Perform the birth/death in a lower-dimensional subspace (i.e., CVs)

Samples the equilibrium Boltzmann distribution, similar as parallel-tempering 
- Per se not an issue  
- But, can be difficult to describe transition states and low populated states 
- Can lose particles from a metastable state

Algorithm can only populate metastable states that have a walker  
- Only “exploitation” mode and not “exploration” mode  
- Need to know states in advance
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Still Very Early On: Outlook and Next Steps

Perform the birth/death step only a subspace of some CVs 
- How does the method work in this case?  
- Birth/death dynamics on a free energy landscape that is a-priori unknown  
- Need to estimate the energy landscape on the fly

Combine with a CV-based enhanced sampling method => the long time goal 
- Should help with many of the issues 

- Add “exploration” mode to the combined method 
- Better sample transition states and higher lying regions

Improve performance of multiple walker simulations — Our initial motivation  
- Related Idea: Lelièvre, Rousset, & Stoltz, JCP 2007



30

Acknowledgements 
Mathematical analysis 

Dr. Lisa Hartung Dr. Simon Holbach

University of Mainz

Numerical Implementation 

Max Planck Institute for Polymer Research 

Dr. Benjamin Pampel

Funding - Project A10 within the Collaborative Research Center TRR 146: "Multiscale Simulation Methods for Soft Matter Systems”



31

Other Recent Publications

Nanning Petersen

The Crucial Role of Solvation Forces in 
the Steric Stabilization of Nanoplatelets

Nano Lett. 22, 9847–9853 (2022)

Benjamin Pampel

Wavelet (Localized) Based Bias Potentials for 
Variationally Enhanced Sampling 

J. Chem. Theory Comput. 18, 4127-4141 (2022)

Multiscale Reweighted 
Stochastic EmbeddingA  

and  

Reweighted Manifold LearningB 

For Learning CV from Biased 
Simulation Data

A J. Phys. Chem. A, 125, 6286 (2021) 
B J. Chem. Theory Comput. 18, 7179 (2022)

With Jakub Rydzewski, Nicolaus 
Copernicus University, Poland

zl

zk
qkl

ℝn

x → ξ(x) = z

xl

xk

pkl
ℝd


