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FNO, GNO [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, & Anandkumar, 20],
MgNO [He, Liu, Xu 23], DeepGreen [Gin, Shea, Brunton & Kutz, 21], DeepONet [Lu, Jin & Karniadakis, 19]
IAE-net [Ong, Shen, Yang, 2022], DIMON [Yin, Charon, Brody, Lu, Trayanova, Maggioni, 2024]
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If  is big enough, then how do I generate the ?N f′ is
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≈
�̂�θ



Data-efficient solution operator learning

∇2u = f, u |[0,1]2 = 0
2D Poisson equation

5N

Forcing term

Solution

Training pairs
Accuracy of the approx. solution operator 

f′ is

u′ is
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Green’s function associated with linear PDEs

Linear PDE 
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Green’s function associated with linear PDEs

Linear PDE 

ℒu = f on Ω ⊆ ℝd

u |∂Ω = 0

Solution operator

u(x) = ∫Ω
G(x, y)f(y)dy

u(0) = u(1) = 0

−∇2u = f Green’s function for PDEs
in  are unbounded

functions 
d > 1



Theorem: 
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∥G − Ĝ∥Lp ≤ ϵ∥G∥Lp

7

Green’s function recovery

PDE class p

??

??

[Boullé & T., 2021], [Boullé, Kim, Tianyi & T., 2022], [Boullé, Hailikas & T., 2023] [Wang & T., 2024]



Theorem: 
There is a randomized algorithm that, for any , can construct an 
approx.  of  for PDE class with                         input-output pairs 

 such that
                                       
with high probability.    

ϵ > 0
G Ĝ
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Generalization of the randomized SVD

[Boullé & T., 2021]
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Generalization of the randomized SVD

[Boullé & T., 2021]

Prior knowledge about A helps:
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Randomized SVD for Green’s functions
We can learn kernel in a self-adjoint HS integral operator :f ↦ ∫Ω
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Randomized SVD for Green’s functions
We can learn kernel in a self-adjoint HS integral operator :f ↦ ∫Ω
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Randomized SVD for HS operators:

Y =
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[Boullé & T., 2022]

Q = orth(Z)
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3
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Green’s functions are low rank on separated blocks

One dimension Three dimensions

Rapidly decaying 
singular values

Very slow decaying 
singular values

Related approaches for matrices:
[Martinsson, 2008], [Lin, Lu, & Ying, 2010], 

[Martinsson, 2016], [Levitt & Martinsson, 2022]
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Off-diagonal decay

(for 3D elliptic PDEs)

(Pictures are in 1D for illustration purposes.)
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Green’s functions associated with 1D hyperbolic PDEs

Solution operators for 1D hyperbolic PDEs have 
Green’s functions with jumps along characteristics. 

2D slice through the 4D 
Green’s function

Chris Wang

[Wang & T., 2024]
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Green’s functions associated with 1D hyperbolic PDEs

Solution operators for 1D hyperbolic PDEs have 
Green’s functions with jumps along characteristics. 

2D slice through the 4D 
Green’s function

Chris Wang

[Wang & T., 2024]

Using input-output data to: 
1. Adaptively partition domain to 

isolate characteristics in tiny regions
2. Recover Green’s function off the 

characteristics
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Quality of training data

In our theoretical results,  is a measure of the quality of the training data.Γϵ

Ω × Ω
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Can operator learning be data-efficient with only input-output  data?{fi, 𝒢( fi)}N
i=1

Question: 

Operator learning without the adjoint
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c = 0 c = 5 c = 10

Forcing terms:   input-output functions drawn from a Gaussian process.  N

The adjoint mystery

𝒪(1) 𝒪(1)
Constant coeff., 

elliptic  d = 1,2,3

PDE class With adjoint Without adjoint 

𝒪(logd+2(1/ϵ)) 𝒪(ϵ−d/2)
General 2nd order 

uniform elliptic 
 d = 1,2,3

[Boullé, Halikias, Otto & T., 2024], [Levitt & Martinsson, 2024]
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https://github.com/NBoulle/greenlearning

Can operator learning be data-efficient with only input-output  data?{fi, 𝒢( fi)}N
i=1

Question: 


