Elliptic PDE learning is provably data-efficient

AlexTownsend Cornell University townsend@cornell.edu

Joint work with

Nicolas Boullé

Diana Halikias

Seick Kim

Sam Otto

Related papers:
"Learning elliptic partial differential equations with randomized linear algebra" by Boullé and T. in FoCM, 2022
"Learning Green's functions associated with time-dependent partial differential equations" by Boullé, Kim, Shi, and T. in JMLR, 2022
"Elliptic PDE learning is provably data-efficient" by Boullé, Halikias and T. in PNAS, 2023
"Operator learning for hyperbolic partial differential equations" by Wang and T., on ArXiv, 2024

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathscr{X} \rightarrow \mathscr{Y}$

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathscr{X} \rightarrow \mathscr{Y}$
Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathscr{X} \rightarrow \mathscr{Y}$
Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

$$
\text { E.g., } \hat{\mathscr{G}}_{\theta}=\mathbb{Q} \circ \sigma\left(\mathscr{K}_{L}\right) \circ \cdots \circ \sigma\left(\mathscr{K}_{1}\right) \circ \mathscr{P}
$$

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathscr{X} \rightarrow \mathscr{Y}$
Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathscr{X} \rightarrow \mathscr{Y}$ Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathcal{X} \rightarrow \mathscr{Y}$ Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathcal{X} \rightarrow \mathscr{Y}$ Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathcal{X} \rightarrow \mathscr{Y}$
Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

Want to find θ such that $\mathscr{G} \approx \hat{\mathscr{G}}_{\theta}$ in some sense.

Operator learning in a nutshell

Operator between function spaces: $\mathscr{G}: \mathscr{X} \rightarrow \mathscr{Y}$
Approx. \mathscr{G} by building a parametric map $\hat{\mathscr{G}}_{\theta}$

Want to find θ such that $\mathscr{G} \approx \hat{\mathscr{G}}_{\theta}$ in some sense. FNO, GNO [Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, \& Anandkumar, 20], $\mathrm{MgNO}[\mathrm{He}, \mathrm{Liu}, \mathrm{Xu}$ 23], DeepGreen [Gin, Shea, Brunton \& Kutz, 2I], DeepONet [Lu, Jin \& Karniadakis, I9] IAE-net [Ong, Shen, Yang, 2022], DIMON [Yin, Charon, Brody, Lu, Trayanova, Maggioni, 2024]

Neural operator learning

Usually, we collect input-output data $\left\{f_{i}, \mathscr{G}\left(f_{i}\right)\right\}_{i=1}^{N}$ and try to solve

$$
\inf _{\theta} \frac{1}{N} \sum_{i=1}^{N}\left\|\mathscr{G}\left(f_{i}\right)-\hat{\mathscr{G}}_{\theta}\left(f_{i}\right)\right\|_{\mathscr{Y}}^{2}
$$

Questions:

Neural operator learning

Usually, we collect input-output data $\left\{f_{i}, \mathscr{G}\left(f_{i}\right)\right\}_{i=1}^{N}$ and try to solve

$$
\inf _{\theta} \frac{1}{N} \sum_{i=1}^{N}\left\|\mathscr{G}\left(f_{i}\right)-\hat{\mathscr{G}}_{\theta}\left(f_{i}\right)\right\|_{\mathscr{Y}}^{2}
$$

Questions:

What are the \mathscr{G} 's of interest?

Neural operator learning

Usually, we collect input-output data $\left\{f_{i}, \mathscr{G}\left(f_{i}\right)\right\}_{i=1}^{N}$ and try to solve

$$
\inf _{\theta} \frac{1}{N} \sum_{i=1}^{N}\left\|\mathscr{G}\left(f_{i}\right)-\hat{\mathscr{G}}_{\theta}\left(f_{i}\right)\right\|_{\mathscr{Y}}^{2}
$$

Questions:

What are the \mathscr{G} 's of interest?
How big does N need to be for a certain accuracy?

Neural operator learning

Usually, we collect input-output data $\left\{f_{i}, \mathscr{G}\left(f_{i}\right)\right\}_{i=1}^{N}$ and try to solve

$$
\inf _{\theta} \frac{1}{N} \sum_{i=1}^{N}\left\|\mathscr{G}\left(f_{i}\right)-\hat{\mathscr{G}}_{\theta}\left(f_{i}\right)\right\|_{\mathscr{Y}}^{2}
$$

Questions:

What are the \mathscr{G} 's of interest?
How big does N need to be for a certain accuracy?
If N is big enough, then how do I generate the $f_{i}^{\prime} s$?

Solution operators associated with PDEs

Question:

What are the \mathscr{G} 's of interest?

My focus for this talk:

Solution operators associated with PDEs

Solution operators associated with PDEs

Question:

What are the \mathscr{G} 's of interest?

My focus for this talk:

Solution operators associated with PDEs

Input-output data: $\left\{\left(f_{j}, u_{j}\right)\right\}_{j=1}^{N}$ such that $\mathscr{N}\left(u_{j}\right)=f_{j}, \quad \mathscr{B}\left(u_{j}\right)=0$.

Solution operators associated with PDEs

Question:

What are the \mathscr{G} 's of interest?

My focus for this talk:

Solution operators associated with PDEs

Input-output data: $\left\{\left(f_{j}, u_{j}\right)\right\}_{j=1}^{N}$ such that $\mathscr{N}\left(u_{j}\right)=f_{j}, \quad \mathscr{B}\left(u_{j}\right)=0$.

Solution operators associated with PDEs

Question:

What are the \mathscr{G} 's of interest?

My focus for this talk:

Solution operators associated with PDEs

Input-output data: $\left\{\left(f_{j}, u_{j}\right)\right\}_{j=1}^{N}$ such that $\mathscr{N}\left(u_{j}\right)=f_{j}, \quad \mathscr{B}\left(u_{j}\right)=0$.

Forcing functions

PDE solutions

Data-efficient solution operator learning

2D Poisson equation

$$
\nabla^{2} u=f,\left.\quad u\right|_{[0,1]^{2}}=0
$$

Accuracy of the approx. solution operator

Forcing term

Green's function associated with linear PDEs

Linear PDE

$$
\begin{gathered}
\mathscr{L} u=f \text { on } \Omega \subseteq \mathbb{R}^{d} \\
\left.u\right|_{\partial \Omega}=0
\end{gathered}
$$

Solution operator

$$
u(x)=\underbrace{\int_{\Omega} G(x, y) f(y) d y}_{=(\mathscr{G} f)(x)}
$$

Green's function associated with linear PDEs

Linear PDE

$$
\begin{gathered}
\mathscr{L} u=f \text { on } \Omega \subseteq \mathbb{R}^{d} \\
\left.u\right|_{\partial \Omega}=0
\end{gathered}
$$

Solution operator

$$
u(x)=\underbrace{\int_{\Omega} G(x, y) f(y) d y}_{=(\mathscr{G} f)(x)}
$$

Poisson equation

$$
\begin{gathered}
-\nabla^{2} u=f \\
u(0)=u(1)=0
\end{gathered}
$$

Green's function for PDEs in $d>1$ are unbounded functions

Green's function recovery

Theorem: [Boullé \&T., 202 I], [Boullé, Kim, Tianyi \&T., 2022], [Boullé, Hailikas \&T., 2023] [Wang \&T., 2024] There is a randomized algorithm that, for any $\epsilon>0$, can construct an approx. G of \hat{G} for PDE class with ?? input-output pairs $\left(f_{j}, u_{j}\right)$ such that

$$
\|G-\hat{G}\|_{L^{p}} \leq \epsilon\|G\|_{L^{p}}
$$

with high probability.

Green's function recovery

Theorem: [Boullé \&T., 202 I], [Boullé, Kim, Tianyi \&T., 2022], [Boullé, Hailikas \&T., 2023] [Wang \&T., 2024] There is a randomized algorithm that, for any $\epsilon>0$, can construct an approx. G of \hat{G} for PDE class with ?? input-output pairs (f_{j}, u_{j}) such that

$$
\|G-\hat{G}\|_{L^{p}} \leq \epsilon\|G\|_{L^{p}}
$$

with high probability.

Green's function recovery

Theorem: [Boullé \&T., 202 I], [Boullé, Kim, Tianyi \&T., 2022], [Boullé, Hailikas \&T., 2023] [Wang \&T., 2024] There is a randomized algorithm that, for any $\epsilon>0$, can construct an approx. G of \hat{G} for PDE class with ?? input-output pairs $\left(f_{j}, u_{j}\right)$ such that

$$
\|G-\hat{G}\|_{L^{p}} \leq \epsilon\|G\|_{L^{p}}
$$

with high probability.

Green's function recovery

Theorem: [Boullé \&T., 202 I], [Boullé, Kim, Tianyi \&T., 2022], [Boullé, Hailikas \&T., 2023] [Wang \&T., 2024] There is a randomized algorithm that, for any $\epsilon>0$, can construct an approx. G of \hat{G} for PDE class with ?? input-output pairs $\left(f_{j}, u_{j}\right)$ such that

$$
\|G-\hat{G}\|_{L^{p}} \leq \epsilon\|G\|_{L^{p}}
$$

with high probability.

Recovering a matrix with matrix-vector products

We can recover a symmetric low-rank matrix with matrix-vector products $v \mapsto A v$:

Randomized SVD:

Recovering a matrix with matrix-vector products

We can recover a symmetric low-rank matrix with matrix-vector products $v \mapsto A v$:
Randomized SVD:

Recovering a matrix with matrix-vector products

We can recover a symmetric low-rank matrix with matrix-vector products $v \mapsto A v$:

Randomized SVD:

 with iid indep. entries [Halko, Martinsson, \&Tropp, 20II], [Martinsson \& Tropp, 2020]
Recovering a matrix with matrix-vector products

We can recover a symmetric low-rank matrix with matrix-vector products $v \mapsto A v$:

Randomized SVD:

Recovering a matrix with matrix-vector products

We can recover a symmetric low-rank matrix with matrix-vector products $v \mapsto A v$:

Randomized SVD:

Theorem (Halko, Martinsson, Tropp, 2011).
We can construct an approximation A_{k} of A from $k+5$ random input vectors such that
$\mathbb{P}\left[\left\|A-A_{k}\right\|_{\mathrm{F}} \leq(1+15 \sqrt{k+5}) \epsilon_{k}\right] \geq 0.999$

Recovering a matrix with matrix-vector products

We can recover a symmetric low-rank matrix with matrix-vector products $v \mapsto A v$:

Randomized SVD:

$Q=\operatorname{orth}(Z)$
orthonormal basis for $\operatorname{col}(Z)$

$$
A_{k}=Q Q^{*} A
$$ with iid indep. entries [Halko, Martinsson, \& Tropp, 20II], [Martinsson \&Tropp, 2020]

Theorem (Halko, Martinsson, Tropp, 2011).
We can construct an approximation A_{k} of A from $k+5$ random input vectors such that
$\mathbb{P}\left[\left\|A-A_{k}\right\|_{\mathrm{F}} \leq(1+15 \sqrt{k+5}) \epsilon_{k}\right] \geq 0.999$

Number of samples

Generalization of the randomized SVD

Standard Gaussian vectors

Theorem [Boullé \& T., 202 I]
We can construct an approximation A_{k} of A from $k+5$ correlated random input vectors such that
$\mathbb{P}\left[\left\|A-A_{k}\right\|_{\mathrm{F}} \leq\left(1+18 \sqrt{k / \gamma_{k}}\right) \epsilon_{k}\right] \geq 0.999$

Generalization of the randomized SVD

Standard Gaussian vectors

Correlated Gaussian vectors

Prior knowledge about A helps:
Theorem [Boullé \&T., 2021]
We can construct an approximation A_{k} of A from $k+5$ correlated random input vectors such that
$\mathbb{P}\left[\left\|A-A_{k}\right\|_{\mathrm{F}} \leq\left(1+18 \sqrt{k / \gamma_{k}}\right) \epsilon_{k}\right] \geq 0.999$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y:$ Randomized SVD for HS operators:

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

(1) $\Omega \times(k+5)$
$Y=\| \|$

Cols are drawn from
Gaussian process $G P(0, C)$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

(1) $\Omega \times(k+5)$

Cols are drawn from
Gaussian process $G P(0, C)$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

(1) $\begin{aligned} & \Omega \times(k+5) \\ & Y=\text { mathon }\end{aligned}$

Cols are drawn from
Gaussian process $G P(0, C)$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

(1) $\Omega \times(k+5)$

Cols are drawn from
Gaussian process $G P(0, C)$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

(1) $\Omega \times(k+5)$

$Z_{i}(x)=\int_{\Omega} G(x, y) Y_{i}(y) d y$
Input-output data
Cols are drawn from Gaussian process $G P(0, C)$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

(1) $\Omega \times(k+5)$

Cols are drawn from
(3)
$Q=\operatorname{orth}(Z)$
orthonormal basis for $\operatorname{col}(Z)$

$$
" G_{k}=Q Q * G^{\prime \prime}
$$

Gaussian process $G P(0, C)$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

Cols are drawn from
(3)
$Q=\operatorname{orth}(Z)$
orthonormal basis for $\operatorname{col}(Z)$

$$
" G_{k}=Q Q * G^{\prime \prime}
$$

Gaussian process $G P(0, C)$
Theorem [Boullé \& T., 2022]
We can construct an approximation G_{k} of G from $k+5$ random input functions f such that
$\mathbb{P}\left[\left\|G-G_{k}\right\|_{L^{2}} \leq \mathcal{O}\left(\sqrt{k^{2} / \gamma_{k}}\right) \epsilon_{k}\right] \geq 0.999$

Randomized SVD for Green's functions

We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) d y$:

Randomized SVD for HS operators:

Cols are drawn from
Gaussian process $G P(0, C)$

Theorem [Boullé \&T., 2022]
We can construct an approximation G_{k} of G from $k+5$ random input functions f such that
$\mathbb{P}\left[\left\|G-G_{k}\right\|_{L^{2}} \leq \mathcal{O}\left(\sqrt{k^{2} / \gamma_{k}}\right) \epsilon_{k}\right] \geq 0.999$

Problem:

Green's functions typically do not have rapidly decaying singular values.
ϵ_{k} decays very slowly with k

Green's functions are low rank on separated blocks

One dimension

Green's functions are low rank on separated blocks

One dimension

Hierarchical structure

Level 2

Level 3

Level 4

Green's functions are low rank on separated blocks

One dimension

Hierarchical structure

Level 2

Level 3

Level 4

Three dimensions

Low-rank structure on well separated domains.
[Bebendorf, Hackbush, 2003]

Green's functions are low rank on separated blocks

One dimension

Hierarchical structure

Level 2

Level 3

Level 4

11

Three dimensions

Low-rank structure on well separated domains.
[Bebendorf, Hackbush, 2003]

Related approaches for matrices:
[Martinsson, 2008], [Lin, Lu, \&Ying, 20 I 0],
[Martinsson, 2016], [Levitt \& Martinsson, 2022]

Off-diagonal decay

Green's function of the Laplace operator:

$$
-\nabla^{2} u=f
$$

Green's functions are smooth and decay off the diagonal. [Gruiter, Widman, 1982]

$$
G(x, y) \leq \frac{1}{\|x-y\|}
$$

Hierarchical structure

Level 2

Level 3

(Pictures are in ID for illustration purposes.)

Green's functions associated with ID hyperbolic PDEs

Solution operators for ID hyperbolic PDEs have Green's functions with jumps along characteristics.

2D slice through the 4D
Green's function

Green's functions associated with ID hyperbolic PDEs

Solution operators for ID hyperbolic PDEs have Green's functions with jumps along characteristics.

2D slice through the 4D
Green's function

Green's functions associated with ID hyperbolic PDEs

Solution operators for ID hyperbolic PDEs have Green's functions with jumps along characteristics.

Green's function

Green's functions associated with ID hyperbolic PDEs

Solution operators for ID hyperbolic PDEs have Green's functions with jumps along characteristics.
 Green's function

Using input-output data to:
I. Adaptively partition domain to isolate characteristics in tiny regions
2. Recover Green's function off the characteristics

Green's function recovery

Theorem: [Boullé \&T., 202 I], [Boulé, Kim, Tianyi \&T., 2022], [Bouléé, Hailikas \&T., 2023] [Wang \&T., 2024] There is a randomized algorithm that, for any $\epsilon>0$, can construct an approx. G of \hat{G} for PDE class with ?? input-output pairs (f_{j}, u_{j}) such that

$$
\|G-\hat{G}\|_{L^{p}} \leq \epsilon\|G\|_{L^{p}}
$$

with high probability.

uniformly self-adjoint elliptic

$$
\text { in } d=1,2,3
$$

uniformly parabolic in $d \geq 1$
(and uni. self-adjoint elliptic in $d \geq 4$.)
uniformly self-adjoint hyperbolic in $d=1$

Quality of training data

In our theoretical results, Γ_{ϵ} is a measure of the quality of the training data.

Theorem

We can construct an approximation G_{k} of G from $k+5$ random input functions f such that

$$
f \sim \mathcal{G} \mathcal{P}(0, K)
$$

where $K(x, y)$ is the covariance kernel

$$
\mathbb{P}\left[\left\|G-G_{k}\right\|_{L^{2}} \leq \mathcal{O}\left(\sqrt{k^{2} / \gamma_{k}}\right) \epsilon_{k}\right] \geq 0.999
$$

Definition: $\quad \gamma_{k}=k /\left(\lambda_{1} \operatorname{Tr}\left(\mathbf{C}^{-1}\right)\right)$
$\mathbf{C}_{i j}=\int_{\Omega \times \Omega} v_{i}(x) K(x, y) v_{j}(y) \mathrm{d} x \mathrm{~d} y$
where v_{i} is the ith right singular vectors of G.

- $0<\gamma_{k} \leq 1$
- We can impose prior knowledge on the covariance kernel
- Explicit bounds for the covariance quality factor are available

Operator learning without the adjoint

Question:

Can operator learning be data-efficient with only input-output $\left\{f_{i}, \mathscr{E}\left(f_{i}\right)\right\}_{i=1}^{N}$ data?

Operator learning with and without the adjoint

Consider

$$
\begin{gathered}
(\mathscr{G} f)=\int_{0}^{1} G(x, y) f(y) d y, \text { where } G \text { is a I -Lipschitz smooth function } \\
\ldots \text { and } G(x, y)=g(x) h(y)
\end{gathered}
$$

Operator learning with and without the adjoint

Consider

$$
\begin{gathered}
(\mathscr{G} f)=\int_{0}^{1} G(x, y) f(y) d y \text {, where } G \text { is a I-Lipschitz smooth function } \\
\ldots \text { and } G(x, y)=g(x) h(y) \\
\text { Then, }(\mathscr{G} f)(x)=\left(\int_{0}^{1} h(y) f(y) d y\right) g(x)
\end{gathered}
$$

Operator learning with and without the adjoint

Consider

$$
\begin{gathered}
(\mathscr{G} f)=\int_{0}^{1} G(x, y) f(y) d y \text {, where } G \text { is a I-Lipschitz smooth function } \\
\text {...and } G(x, y)=g(x) h(y) \\
\text { Then, }(\mathscr{G} f)(x)=\left(\int_{0}^{1} h(y) f(y) d y\right) g(x) \\
\text { The adjoint is }(\mathscr{G} * f)(x)=\left(\int_{0}^{1} g(y) f(y) d y\right) h(x)
\end{gathered}
$$

Operator learning with and without the adjoint

Consider

$$
\begin{aligned}
& (\mathscr{G} f)=\int_{0}^{1} G(x, y) f(y) d y \text {, where } G \text { is a I-Lipschitz smooth function } \\
& \text {...and } G(x, y)=g(x) h(y) \\
& \text { Then, }(\mathscr{G} f)(x)=\left(\int_{0}^{1} h(y) f(y) d y\right) g(x) \\
& \text { The adjoint is }(\mathscr{G} * f)(x)=\left(\int_{0}^{1} g(y) f(y) d y\right) h(x)
\end{aligned}
$$

Training dataset size to achieve ϵ accuracy

Operator learning with and without the adjoint

Consider

$$
\begin{gathered}
(\mathscr{G} f)=\int_{0}^{1} G(x, y) f(y) d y \text {, where } G \text { is a I-Lipschitz smooth function } \\
\ldots \text { and } G(x, y)=g(x) h(y)
\end{gathered}
$$

$$
\text { Then, }(\mathscr{G} f)(x)=\left(\int_{0}^{1} h(y) f(y) d y\right) g(x)
$$

$$
\text { The adjoint is }\left(\mathscr{G}^{*} f\right)(x)=\left(\int_{0}^{1} g(y) f(y) d y\right) h(x)
$$

	With the adjoint
Training dataset size	
to achieve ϵ accuracy	

Operator learning with and without the adjoint

Consider

$$
\begin{gathered}
(\mathscr{G} f)=\int_{0}^{1} G(x, y) f(y) d y \text {, where } G \text { is a I-Lipschitz smooth function } \\
\ldots \text { and } G(x, y)=g(x) h(y)
\end{gathered}
$$

$$
\text { Then, }(\mathscr{G} f)(x)=\left(\int_{0}^{1} h(y) f(y) d y\right) g(x)
$$

$$
\text { The adjoint is }\left(\mathscr{G}^{*} f\right)(x)=\left(\int_{0}^{1} g(y) f(y) d y\right) h(x)
$$

	With the adjoint	Without the adjoint
Training dataset size	$\mathcal{O}(1)$	
to achieve ϵ accuracy	Input-output pairs	

Operator learning with and without the adjoint

Consider

$$
\begin{gathered}
(\mathscr{G} f)=\int_{0}^{1} G(x, y) f(y) d y \text {, where } G \text { is a I-Lipschitz smooth function } \\
\ldots \text { and } G(x, y)=g(x) h(y)
\end{gathered}
$$

$$
\text { Then, }(\mathscr{G} f)(x)=\left(\int_{0}^{1} h(y) f(y) d y\right) g(x)
$$

$$
\text { The adjoint is }(\mathscr{G} * f)(x)=\left(\int_{0}^{1} g(y) f(y) d y\right) h(x)
$$

	With the adjoint	Without the adjoint
Training dataset size	$\mathcal{O}(1)$	$\mathcal{O}(1 / \epsilon)$
to achieve ϵ accuracy	Input-output pairs	Input-output pairs
	[Halikias $\&$ T., 22]	

The adjoint mystery

[Boullé, Halikias, Otto \&T., 2024], [Levitt \& Martinsson, 2024]
Forcing terms: N input-output functions drawn from a Gaussian process.

$$
-\frac{d^{2} u}{d x^{2}}+c \frac{d u}{d x}=f, \quad u(0)=u(1)=0, \quad x \in[0,1] .
$$

The adjoint mystery

[Boullé, Halikias, Otto \&T., 2024], [Levitt \& Martinsson, 2024]
Forcing terms: $N\left(\begin{array}{ccc}\text { (a) } 10^{1} & \\ \hline\end{array}\right.$

The adjoint mystery

[Boullé, Halikias, Otto \& T., 2024], [Levitt \& Martinsson, 2024]

The adjoint mystery

[Boullé, Halikias, Otto \& T., 2024], [Levitt \& Martinsson, 2024]

The adjoint mystery

[Boullé, Halikias, Otto \&T., 2024], [Levitt \& Martinsson, 2024]

Summary

1. Theory for learning Green's functions

$$
\mathcal{L} u=-\nabla \cdot(A(x) \nabla u)
$$

2. Generalization of the randomized SVD

Question:
Can operator learning be data-efficient with only input-output $\left\{f_{i}, \mathscr{G}\left(f_{i}\right)\right\}_{i=1}^{N}$ data?

