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Operator Learning

New diagram for solutions and new opportunities for mathematics

Conventional solvers

Years of design to solve

Months of coding

Accurate but may be slow

Data-driven methods

Learning to solve from data

Days or months of training

Fair and fast solution
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Operator Learning

Problem Statement:
Given: Data samples S = {ui , vi}ni=1 with vi = Ψ(ui )
Goal: Learn an operator Ψ : X → Y from data samples S

Broad applications:

Solving parametric PDEs: parameter functions to PDE
solutions

Solving inverse problems: data to images

Image processing: image to image

Predictive data science: historical states to future states

Learning to optimize: objective functions to optimal updating
rules
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Inverse Problems

Mathematical Model: Find u such that{
Lau = h, in Ω ⊂ Rd

Bu = f , on ∂Ω

a: unknown target function

La: differential operator defined in Ω

h: known source function

B: operator defined on ∂Ω

f : boundary condition

Our Objective: Reconstruct the unknown function a based on

Sn
a = {(fi , gi ), i = 1, . . . , n}

different fi lead to boundary measurement gi
fi are predetermined and depend on the experimental design

gi depend on the setup of receivers
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Traditional Computational Approaches
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Operator Learning

Operator Learning: learn an operator ψ : Sn
a 7→ a

utilize a neural network (NN) ϕθ to parameterize ψ

ϕθ is trained on data samples Sn
a to optimize θ

once trained with an optimal parameter θ∗, ϕθ∗ is used to
estimate any target function a from the corresponding
measurement data
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Operator Learning

The measurement data can be represented by

Sn
a = [Sij ] ∈ Rn×n

n: number of grid points on the boundary

Sij : measurement data collected at receiver j for the solution
generated by the i-th source on the boundary

Target medium function can be expressed as a = [a(xi )] ∈ RM

xi : the grid point

M: number of grid points in the domain

Objective: learn a NN mapping from Rn×n to RM

Challenges: Repeated and expensive training for different data
structures due to varying number of grid points n on the boundary
and M in the domain.
Solution: Discretization invariant operator learning
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Integral Autoencoder networks

Question: How to achieve discretization invariance in operator
learning?
Answer: Integral Autoencoder networks (IAEnet)
Question: What is IAEnet?
Answer: IAEnet has the computational flow:

f̄
F−→ a0

I1−→ a1
I2−→ · · · IL−→ aL

G−→ ḡ

F : a pre-processing NN function

G : a post-processing NN function

I1, . . . , IL: discretization-invariant IAE blocks
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IAE block

Question: What is a discretization invariant IAE block?

I : a
encoder−−−−→ v

FNN−−−→ u
decoder−−−−→ b

a ∈ Ωa and b ∈ Ωb are discretized on the same grid points
S = {xi}si=1

s may vary for different training and testing data pairs

v and u defined on Ωz are discretized on grid points
Sz = {zj}mj=1

m is a fixed number

Answer: In a discretization invariant IAE block, FNN within an IAE
block has fixed input and output dimensions of m.
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Encoder Function and Decoder Function

Question: How to design discretization invariant IAE block?

I : a
encoder−−−−→ v

FNN−−−→ u
decoder−−−−→ b

Answer: Nonlinear integral transform to design encoder and
decoder.
Encoder:

v(z) =

∫
Ωa

ϕ1 (a(x), x , z ; θϕ1) a(x)dx , z ∈ Ωz

Decoder:

b(x) =

∫
Ωz

ϕ2 (u(z), x , z ; θϕ2) u(z)dz , x ∈ Ωb

Challenges: (1) computationally expensive encoders and
decoders; (2) learning the kernels ϕ1 and ϕ2 is challenging.
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Pseudo-differential Integral Autoencoder

Solution: Pseudo-differential Integral Autoencoder (pd-IAE)

Pu(x) = F−1(A(x , ·)û(·)) = 1

(2π)d

∫
e ix ·ξA(x , ξ)û(ξ)dξ

û: Fourier transform of u

A(x , ξ): a smooth function known as the symbol of P

Example: if A(x , ξ) is a polynomial p(ξ), the operator P
corresponds to the classical differential operator p(−i∂x).
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Multi-channel pd-IAE block

Question: What is multi-channel pd-IAE block?
Answer: A multi-channel pd-IAE block has the computational flow

Question: Why multi-channel pd-IAE block?
Answer:

additional Fourier (or Wavelet) channel proves beneficial for
data featuring oscillatory or sparse characteristics

input function a(ξ) is transformed into the frequency domain
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Multi-channel pd-IAE blocks

Simplified encoder function

v(z) = F−1 (A(z , ·)a(·)) =
∫
Ωa

e iz·ξA(z , ξ)a(ξ)dξ

involves only one inverse Fourier transform

does not depend on input grid points

Use a low-rank factorization to approximate A(z , ξ)

A(z , ξ) ≈
K∑

k=1

pk(ξ)qk(z) .

Simplified encoder function

v(z) ≈
K∑

k=1

qk(z ; θqk )

∫
Ωa

e iz·ξa(ξ)pk(ξ; θpk )dξ.
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Pseudo-Differential Decoder Function

Question: How to ensure that the intermediate FNN within a
pd-IAE block has a fixed input size?

I : a
encoder−−−−→ v

FNN−−−→ u
decoder−−−−→ b

Answer:

a(x) ∈ Rs consists of function values at arbitrary grid points
S = {xi}si=1.

a(x) ∈ Rs is mapped to a vector a(ξ) with a fixed size due to
high frequency truncation.

Crucial for achieving discretization invariance: Since a(ξ)
is in the frequency domain, we can truncate high-frequency
modes in a(ξ).

Pd decoder function

b(x) =
K∑

k=1

p̃k(x ; θp̃k )F (q̃k(·; θq̃k )u(·))
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Our Contributions

The low-rank factorization in the integral kernel significantly
simplifies the encoder and decoder functions.

The computation complexity of encoders and decoders
becomes almost linear to enhance the efficiency of pd-IAEnet.
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Numerical Results

Model Parameters Disk space

pd-IAEnet 5,618,785 64.8 MB
IAEnet1 6,040,657 69.4 MB
FNO 2 9,462,849 108 MB
DeepONet 3 81,597,697 933 MB
ResNet 4 5,534,593 63.5 MB

Table: This table presents the number of trainable parameters, and the
disk space usage for each method.
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Inverse scattering

Inverse scattering problem is described by Helmholtz equation(
−∆− w2

c(x)2

)
u = 0 , x ∈ Rd ,

w ∈ R+: frequency

c(x) > 0: unknown inhomogeneous wave speed

Scatter function

η(x) =
w2

c(x)2
− w2

c0(x)2
, x ∈ Ω ,

background wave speed c0(x) is known and identical to c(x)
except on a bounded domain Ω within an unit ball in 3D or an
unit circle in 2D

Objective: reconstruct η(x) from measurements collected at
multiple sources and receiver locations.
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Point scatter distribution

Point scatter media consists of isolated points with small supports.

Figure: The plot illustrates the average relative errors versus the number
of epochs for the inverse scattering problem with point scatter media.
The average error is calculated from the following discretizations:
27× 27, 41× 41, 81× 81, 161× 161, and 241× 241. Pd-IAE net
consistently achieves the lowest average relative error among all the
methods. DeepONet and ResNet struggle to learn the inverse operator.
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Point scatter distribution

Figure: Reconstructed point scatterer at a discretization of 81× 81 from all methods
based on randomly selected testing data. pd-IAE net, IAEnet, and FNO accurately
locate the positions of the point scatterers. pd-IAEnet accurately reconstructs the
points with uniform magnitudes for the three depicted points. IAEnet reconstructs the
bottom two points with an overlap not observed in the ground truth. FNO’s
upper-right point has a noticeably smaller magnitude compared to the other two
points. Both DeepONet and ResNet struggle to reconstruct a meaningful scatterer,
ultimately producing a near-zero solution. 20 / 32



Shepp-Logan scatter distribution

This media consists of indicator functions supported on ellipses
with varying axis lengths, positions, and rotation angles.

Figure: The graph illustrates the average relative errors over epochs for
the inverse scattering problem with Shepp-Logan media. The average
relative error is computed from errors obtained at different
discretizations: 40× 40, 60× 60, 80× 80, 100× 100, and 240× 240.
Pd-IAEnet achieves the lowest average relative error. DeepONet and
ResNet struggle at a large average relative error. 21 / 32



Shepp-Logan scatter distribution

Figure: Reconstructed media at 40× 40 discretization level for the inverse scattering
problem with Shepp-Logan media. Pd-IAE net provides the most accurate
reconstruction of the ground truth. IAEnet introduces a minor inaccuracy below the
two internal ellipses and yields a slightly different magnitude along the bottom
boundary. FNO exhibits several artifacts, with the most noticeable ones just above the
bottom boundary. DeepONet produces a blurry reconstruction of the boundary and
the two internal ellipses. ResNet struggles and approximates a near-zero solution. 22 / 32



Optical tomography (OT)

OT plays a crucial role in reconstructing optical medium properties
based on measurements of light transmitted and scattered through
the medium with applications in biomedical imaging for tissues like
brain and breast.
Mathematical Model (Radiative Transfer Equation (RTE)):

v · ∇ρ(x , v) =σs(x)
(∫

Sd−1

u(x , v ′)dv ′ − u(x , v)

)
, (x , v) ∈ Ω× Sd−1 ,

ρ(x , v) =f (x , v) , (x , v) ∈ Γ− ,

σs(x) > 0: scattering coefficient
incoming boundary Γ− = {(x , v) ∈ ∂Ω× Sd−1 | nx · v < 0}
incoming boundary condition f (x , v) represents sources of
photons injected into the domain
outgoing boundary Γ+ = {(x , v) ∈ ∂Ω× Sd−1 | nx · v > 0}
g = ρ(x , v)|Γ+ : outgoing photon intensity

Objective: reconstruct the scattering coefficient σs from multiple
pairs of incoming and outgoing photon intensities.
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Optical tomography

Figure: The plot illustrates the average relative errors as a function of
training epochs for OT. This average error is computed from the errors at
different discretizations: 30× 30, 40× 40, 50× 50, 60× 60, and 70× 70.
Both pd-IAEnet and IAEnet consistently achieve low errors, each below
0.1. DeepONet and ResNet stabilize at a high error level. FNO exhibits a
divergent average relative error.
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Optical tomography

Figure: Reconstruction of the sinusoidal scattering coefficient in OT with a 60 × 60
discretization grid. Both pd-IAE net and IAEnet yield reconstructions that closely
align with the ground truth. IAEnet’s reconstruction exhibits minor perturbations,
particularly on the left side of the wave’s base. Both FNO and DeepONet encounter
difficulties in accurately capturing the location and wavelength of the sine wave.
ResNet excels in identifying the location of the wave but faces challenges in accurately
determining its magnitude.
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Electrical impedance tomography (EIT)

EIT (Calderón problem) plays a significant role in noninvasive
medical imaging, particularly in the early diagnosis of breast cancer.
Mathematical Model:{

−div
(
ea(x)∇u(x)

)
= 0 , x ∈ Ω ,

u(x) = f (x) , x ∈ ∂Ω ,

a(x): unknown medium conductivity

f : boundary voltage

Objective: to reconstruct the function a(x), given the
Dirichlet-to-Neumann data pairs Sn

a = {(fi , gi ) | i = 1, . . . , n}
where current measurements are the Neumann derivatives of the
solution g = ea ∂u∂n |∂Ω on the boundary.

26 / 32



Electrical impedance tomography (EIT)

Figure: The plot presents the average relative errors plotted against the
number of epochs for the Calderón problem. The relative errors are
averaged across different discretizations: 42× 42, 63× 63, 84× 84,
126× 126, and 252× 252. FNO exhibits a diverging trend in its average
relative error, indicating instability during training. DeepONet and
ResNet converge, but with persistently high relative errors. Both pd-IAE
net and IAE-net consistently achieve significantly lower errors,
highlighting their robust training. IAE-net reaches its smallest error of
0.56 during the training process, while pd-IAE net outperforms with the
smallest error of 0.50. 27 / 32



Figure: Reconstructed images generated by all models based on randomly selected
measurement data with a discretization of 252× 252 for Calderón problem. Both
pd-IAEnet and IAEnet consistently deliver superior reconstructions. pd-IAEnet excels
in distinguishing the internal ellipses and provides a more accurate reconstruction of
the boundary compared to IAEnet. DeepONet is capable of producing a somewhat
blurry image of the Shepp Logan phantom. FNO and ResNet clearly indicate their
inability to accurately reconstruct the Shepp Logan phantom. 28 / 32



Discretization Invariance

Figure: This graph provides the relative errors across various
discretizations for inverse scattering with Shepp Logan media. The x-axis
shows different discretization sizes: 40× 40, 60× 60, 80× 80, 100× 100,
and 120× 120. As the discretizations move away from the original
setting of 80× 80, the accuracy of FNO, DeepONet, and ResNet
noticeably declines. Pd-IAE net and IAEnet consistently maintain high
accuracy levels across all discretizations. Pd-IAE net stands out with the
best overall accuracy and maintains near-uniform accuracy levels across
all discretizations. 29 / 32



Discretization Invariance

Figure: The graph offers the relative errors across a range of
discretizations for OT. x-axis shows different discretization sizes: 30× 30,
40× 40, 50× 50, 60× 60, and 70× 70. pd-IAE net and IAE net
consistently exhibit uniform accuracy across all discretization meshes.
Pd-IAE net stands out with the best overall accuracy and maintains
near-uniform accuracy levels across all discretizations. FNO manages to
achieve good accuracy on the 50× 50 mesh but experiences a substantial
relative error exceeding 100% on other meshes. Both DeepONet and
ResNet display uniform errors across all discretization meshes with lower
overall accuracy levels. 30 / 32



Robustness to noise

Figure: The table shows the average relative errors with no noise.

Figure: The table provides the average relative errors with noisy data. In
inverse scattering problem, 1% additive noise is added to the
measurement data for the point media and Shepp-Logan media. For OT,
0.25% noise is added to the measurement data.
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Thank you very much for your attention!

Chunmei Wang
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