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What are diffusion models?

Problem (Generative Modeling)

Learn a probability distribution from samples, and generate additional samples.

Diffusion models (Hyvärinen 2005; Sohl-Dickstein, Weiss, Maheswaranathan, et al. 2015;
Y. Song and Ermon 2019) are a modern paradigm for generative modeling with
state-of-the-art performance on image, audio, video generation.

Core component of DALL·E,
Imagen, Stable Diffusion...

Pictures from Ramesh, Dhariwal, Nichol, et al.

2022.

What theoretical guarantees can we obtain for diffusion models?
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What are diffusion models?

Problem (Generative Modeling)

Learn a probability distribution from samples, and generate additional samples.

Diffusion models (Hyvärinen 2005; Sohl-Dickstein, Weiss, Maheswaranathan, et al. 2015;
Y. Song and Ermon 2019) are a modern paradigm for generative modeling with
scientific applications including:

Inverse problems

Physics simulations

Molecular modeling

Protein design

Corso, Stärk, Jing, Barzilay, and Jaakkola 2022

What theoretical guarantees can we obtain for diffusion models?
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How diffusion models work

Picture from Y. Song, Sohl-Dickstein, Kingma, et al. 2020

Define a forward process, e.g., stochastic differential equation (SDE) that converts data
into pure noise.

Can also be Markov process on discrete space or (deterministic) ODE.
General framework: Montanari 2023. (↔ Stochastic localization)

Transform pure noise into samples from learned data distribution via reverse process.
The SDE involves the (Stein) score function, often estimated with a neural network.
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Diffusion models vs. other generative models

Generative adversarial networks (GAN’s), variational auto-encoders, normalizing flows...

Diffusion models:
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Two steps to diffusion models

1. Estimate the score function from data.

Definition

The (Stein) score function of a probability distribution with density p(x) ∝ e−V (x) is

s(x) = ∇ ln p(x) = −∇V (x).

2. Draw samples given a score estimate.

Langevin Monte Carlo: Algorithm for drawing samples from p ∝ e−V given the score.

Langevin diffusion → Langevin Monte Carlo

dxt = −∇V (xt) +
√
2 dwt → xt+h = h ·�����−∇V (xt)

s(xt)

+
√
2h · 𝜉t ,

Other diffusion processes based on reverse SDE’s.
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Estimating the score function: Bayesian inference problem

Reduction to supervised learning problem: The score function can be estimated in L2(p) by
minimizing the denoising auto-encoder (DAE) objective. Let 𝜙𝜎2 be the density of N(0, 𝜎2Id).

Proposition (Vincent 2011)

Suppose p * 𝜙𝜎2 ∝ e−V𝜎2 . The minimum of the DAE objective

LDAE(r) = EX∼pE𝜉∼N(0,𝜎2)

î
‖r(X + 𝜉)− X‖2

ó
is r(y) = y − 𝜎2∇V𝜎2(y), i.e., ∇V𝜎2(y) =

y−r(y)
𝜎2 .
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Estimating the score function: Bayesian inference problem

Proposition (Vincent 2011, equivalently)

Suppose p * 𝜙𝜎2 ∝ e−V𝜎2 . The minimum of the objective

L(g) = EX∼pE𝜉∼N(0,𝜎2)

î
‖g(X + 𝜉)− 𝜉‖2

ó
is g(y) = 𝜎2∇V𝜎2(y)

Consider X ∼ p, 𝜉 ∼ N(0, 𝜎2Id), Y = X + 𝜉. By Bayes’s Rule,

∇V𝜎2(y) = −∇ ln(p * 𝜙𝜎2(y)) = −∇y ln

∫︁
Rd

e−V0(x)e−
‖y−x‖2

2𝜎2 dx

=

∫︀
Rd

y−x
𝜎2 e−V0(x)e−

‖y−x‖2

2𝜎2 dx∫︀
Rd e−V0(x)e−

‖y−x‖2

2𝜎2 dx

=

∫︀
Rd

y−x
𝜎2 p(x)P(y |x) dx∫︀

Rd p(x)P(y |x) dx

=
1

𝜎2
E[y − X |Y = y ] =

1

𝜎2
E[𝜉|Y = y ].
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Estimating the score function: Bayesian inference problem

Proposition (Vincent 2011, equivalently)

Suppose p * 𝜙𝜎2 ∝ e−V𝜎2 . The minimum of the objective

L(g) = EX∼pE𝜉∼N(0,𝜎2)

î
‖g(X + 𝜉)− 𝜉‖2

ó
is g(y) = 𝜎2∇V𝜎2(y)

Consider X ∼ p, 𝜉 ∼ N(0, 𝜎2Id), Y = X + 𝜉.

Key identity (Tweedie’s formula)

𝜎2∇V𝜎2(y) = E[y − X |Y = y ] = E[𝜉|Y = y ].

Identity ⇒ Proposition: The minimal mean square estimator (MMSE) g is exactly the mean
of the posterior E[𝜉|Y = y ].
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Two steps to SGM

1. Estimate the score function from data.

Question 2

When can we obtain a L2(p)-accurate score estimate?

‖∇ ln p − s‖2L2(p) = Ep ‖∇ ln p(x)− s(x)‖2 ≤ 𝜀2.

2. Draw samples given a score estimate, using reverse SDE.

Question 1

What guarantees can we obtain for sampling from p given a L2(p)-accurate score estimate?
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Two steps to SGM

1. Estimate the score function from data.

Question 2

When can we obtain a L2(p)-accurate score estimate?

‖∇ ln p − s‖2L2(p) = Ep ‖∇ ln p(x)− s(x)‖2 ≤ 𝜀2.

2. Draw samples given a score estimate, using reverse SDE.

Question 1

What guarantees can we obtain for sampling from p given a L2(p)-accurate score estimate?

Key differences from usual setting of sampling algorithms (Langevin Monte Carlo):

We only have L2(p)-accurate score function.
Non-time-homogeneous process (“non-equilibrium thermodynamics”).
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Two steps to SGM

1. Estimate the score function from data.

Question 2

When can we obtain a L2(p)-accurate score estimate?

‖∇ ln p − s‖2L2(p) = Ep ‖∇ ln p(x)− s(x)‖2 ≤ 𝜀2.

2. Draw samples given a score estimate, using reverse SDE.

Question 1

What guarantees can we obtain for sampling from p given a L2(p)-accurate score estimate?

Why not just Langevin Monte Carlo? Efficient sampling relies on mixing.

Reverse process acts like annealing to allow sampling from multimodal distributions.
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Questions

Question 1

What guarantees can we obtain for sampling from p given a L2(p)-accurate score estimate?

1. Can we get guarantees for general data distributions without smoothness?

[H. Chen, L, and Lu 2023], Improved Analysis of Score-based Generative Modeling:
User-Friendly Bounds under Minimal Smoothness Assumptions.
http://www.arxiv.org/abs/2211.01916

Smoothing properties of the forward process lead to good convergence rates for arbitrary
data distributions.

2. Can we obtain better dimension dependence?

[S. Chen, Chewi, L, Li, Lu, and Salim 2023], The probability flow ODE is provably fast.
http://www.arxiv.org/abs/2305.11798

Using an ODE instead of SDE, in conjunction with a corrector step, can reduce dimension
dependence from O(d) to O(

√
d).
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DDPM with exponential integrator

Suppose unit speed: g ≡ 1.

Forward SDE: dxt = −1

2
xt dt + dwt

Backward SDE: dx←t =
1

2
[xt + 2∇ ln pT−t(x

←
t )] dt + dwt

Start with

z0 ∼ N(0, Id) ≈ pT .
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DDPM with exponential integrator

Suppose unit speed: g ≡ 1.

Forward SDE: dxt = −1

2
xt dt + dwt

Backward SDE: dx←t =
1

2
[xt + 2∇ ln pT−t(x

←
t )] dt + dwt

Start with

z0 ∼ N(0, Id) ≈ pT .

Exponential integrator: letting hk = tk − tk−1,

zT−tk−1
= zT−tk + (ehk/2 − 1)(zT−tk + 2s(zk , tk)) +

√︀
ehk − 1 𝜂k⏟ ⏞ 

∼N(0,Id )

.
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Summary of results

Theorem (H. Chen, L, and Lu 2023, informal)

Suppose p0 has bounded 2nd moment and average L2 score error is ≤ 𝜀sc. Guarantees for
DDPM hold under the following smoothness assumptions:

Smoothness assumption Error guarantee Steps to get ‹O(𝜀2sc) error

∀t,∇ ln pt L-Lipschitz KL(p0||q̂T ) O
Ä
dL2

𝜀2sc

ä
∇ ln p0 L-Lipschitz KL(p0||q̂T ) O

(︁
d2(ln L)2

𝜀2sc

)︁
None KL(p𝛿||q̂T−𝛿) O

(︁
d2 ln(1/𝛿)2

𝜀2sc

)︁

Intuition:
Lipschitz constant of ∇ ln pt for t = Ω(1) is
“effectively” bounded by

√
d .
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Summary of results

Theorem (H. Chen, L, and Lu 2023, informal)

Suppose p0 has bounded 2nd moment and average L2 score error is ≤ 𝜀sc. Guarantees for
DDPM hold under the following smoothness assumptions:

Smoothness assumption Error guarantee Steps to get ‹O(𝜀2sc) error

∀t,∇ ln pt L-Lipschitz KL(p0||q̂T ) O
Ä
dL2

𝜀2sc

ä
∇ ln p0 L-Lipschitz KL(p0||q̂T ) O

(︁
d2(ln L)2

𝜀2sc

)︁
None KL(p𝛿||q̂T−𝛿) O

(︁
d2 ln(1/𝛿)2

𝜀2sc

)︁
Sampling is as easy as learning the score function. (S. Chen, Chewi, J. Li, et al. 2023)
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DDPM with estimated score: smooth distributions

Assumption

1. p0 has second moment Ep0 ‖x‖
2 = M2.

2. The score estimate s has average error

1

T

T∑︁
k=1

‖∇ ln ptk − s(·, tk)‖2L2(ptk ) ≤ 𝜀2sc.

3. ∇ ln pt is L-Lipschitz for every t.
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DDPM with estimated score: smooth distributions

Theorem (S. Chen, Chewi, J. Li, et al. 2023; H. Chen, L, and Lu 2023)

Under these assumptions, the error of DDPM with exponential integrator and N discretization
steps satisfies (for T = Ω(1))

KL(p0||̂︀qT ) ≲ (M2 + d)e−T + T𝜀2sc +
T 2L2d

N
.

Choosing T = ln
Ä
M2+d
𝜀2sc

ä
and N = Θ

Ä
dT 2L2

𝜀2sc

ä
makes this ‹O(𝜀2sc).

Terms quantify

1. convergence of forward process,

2. score estimation error, and

3. discretization error.
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Term #1: Convergence of forward process

By chain rule for KL divergence,

KL(p0‖̂︀qT ) ≤ KL(pT‖ ̂︀q0⏟ ⏞ 
N(0,Id )

) + EpT (a) KL(p0|T (·|a)‖̂︀qT |0(·|a)).
KL(pT‖̂︀q0) is bounded by convergence of the forward process:

KL(pT‖̂︀q0) ≲ (d +M2)⏟  ⏞  
(1)

e−T⏟ ⏞ 
(2)

1. The KL divergence after Θ(1) time is O(d +M2).
2. Exponential mixing of the forward (Ornstein-Uhlenbeck) process.
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Term #2: score estimation error

KL(p0‖̂︀qT ) ≤ KL(pT‖ ̂︀q0⏟ ⏞ 
N(0,Id )

) + EpT (a) KL(p0|T (·|a)‖̂︀qT |0(·|a)).
By chain rule for KL divergence and Girsanov*,

EpT (a) KL(p0|T (·|a)‖̂︀qT |0(·|a))
=

N∑︁
k=1

Eptk (a)
KL(ptk−1|tk (·|a)‖̂︀qT−tk−1|T−tk

(·|a))

≤
N∑︁

k=1

1

2

∫︁ tk

tk−1

Ext∼pt ‖s(xtk , tk )−∇ ln pt(xt)‖2 dt

≤
N∑︁

k=1

∫︁ tk

tk−1

Ext∼pt ‖s(xtk , tk )−∇ ln ptk (xtk )‖
2

+ E ‖∇ ln ptk (xtk )−∇ ln pt(xt)‖2 dt.

N∑︁
k=1

∫︁ tk

tk−1

Ext∼pt ‖s(xtk , tk)−∇ ln ptk (xtk )‖
2 dt ≤ T𝜀2sc
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(Key) Term #3: Discretization error

Need to bound
N∑︁

k=1

∫︁ tk

tk−1

E ‖∇ ln ptk (xtk )−∇ ln pt(xt)‖2 dt.

Let 𝛼 = 𝛼t,s = es−t , s = tk . Split up

E ‖∇ ln ps(xs)−∇ ln pt(xt)‖2

≲ E ‖∇ ln ps(xs)−∇ ln pt(𝛼s,txs)‖2 (time)

+ E ‖∇ ln pt(𝛼s,txs)−∇ ln pt(xt)‖2 (space)

It turns out to be sufficient to bound
space discretization error
E ‖∇ ln pt(xt)−∇ ln pt(𝛼t,sxs)‖2.
𝛼t,sxs = xt + z , where z is Gaussian of
variance O(s − t).
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Bounding the space discretization error with smoothness

Goal: Bound E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2, where 𝛼 = es−t .

Note 𝛼xs = xt + z , z Gaussian of variance O(s − t). By Lipschitzness,

E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2 ≲ L2E ‖z‖2 ≲ dL2(s − t).

Hence
N∑︁

k=1

∫︁ tk

tk−1

E ‖∇ ln ptk (xtk )−∇ ln pt(xt)‖2 dt ≲ TdL2h =
T 2L2d

N
.
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DDPM w/ estimated score: no smoothness, early stopping

Assumption

1. p0 has second moment Ep0 ‖x‖
2 = m2

2.

2. The score estimate s has weighted average error (hk are step sizes)

1

T − 𝛿

T∑︁
k=1

hk ‖∇ ln ptk − stk‖
2
L2(ptk )

≤ 𝜀2sc.

Note: If

‖∇ ln ptk − stk‖
2
L2(ptk )

≤ 𝜀2

min{tk , 1}
,

then (2) is satisfied with a log factor:

1

T − 𝛿

T∑︁
k=1

hk ‖∇ ln ptk − stk‖
2
L2(ptk )

≲
1

T − 𝛿

∫︁ T

𝛿

𝜀2

t ∧ 1
dt ≲ 𝜀2ln

Å
1

𝛿

ã
.
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DDPM w/ estimated score: no smoothness, early stopping

Theorem (H. Chen, L, and Lu 2023)

Given these assumptions, the error of DDPM with exponential integrator and N (exponentially
decaying) discretization steps satisfies

KL(p𝛿||̂︀qT−𝛿) ≲ (m2
2 + d)e−2T + T𝜀2sc +

(︀
ln
(︀
1
𝛿

)︀
+ T

)︀2
d2

N
.

Choosing T = ln
(︁
m2

2+d
𝜀2sc

)︁
, N = Θ

Å
(ln( 1

𝛿 )+T)
2
d2

𝜀2sc

ã
makes this ‹O(𝜀2sc).

Score error assumption:

1

T − 𝛿

T∑︁
k=1

hk ‖∇ ln ptk − stk‖
2
L2(ptk )

≤ 𝜀2sc.
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DDPM w/ estimated score: no smoothness, early stopping

Theorem (H. Chen, L, and Lu 2023)

Given these assumptions, the error of DDPM with exponential integrator and N (exponentially
decaying) discretization steps satisfies

KL(p𝛿||̂︀qT−𝛿) ≲ (m2
2 + d)e−2T + T𝜀2sc +

(︀
ln
(︀
1
𝛿

)︀
+ T

)︀2
d2

N
.

Choosing T = ln
(︁
m2

2+d
𝜀2sc

)︁
, N = Θ

Å
(ln( 1

𝛿 )+T)
2
d2

𝜀2sc

ã
makes this ‹O(𝜀2sc).

Corollary (Pure Wasserstein guarantee)

For 𝛿 = Θ
Ä
𝜀2

d

ä
, N = ‹Θ Äd2R4

𝜀4

ä
(R the “high-probability” radius of p0), the rescaled &

truncated output satisfies
W2(p0, ̂︀qtruncT−𝛿 ) =

‹O(𝜀).

Holden Lee (JHU) Diffusion Models 2024/2/23 20 / 40



Non-smooth setting: Bounding the space discretization error

Goal

Bound 𝜀space = E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2.

E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2 ≲ L2E ‖z‖2 ≲ dL2(s − t).

How to bound without smoothness assumption on pt?
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Non-smooth setting: Bounding the space discretization error

Goal

Bound 𝜀space = E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2.

E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2 ≲ L2E ‖z‖2 ≲ dL2(s − t).

How to bound without smoothness assumption on pt?

Previous approach (S. Chen, Chewi, J. Li, et al. 2023): Use global Lipschitzness of

∇ ln pt . If p0 is supported on ball of radius R ≥ 1 and t ≤ 1, then
⃦⃦
∇2 ln pt

⃦⃦
= O

Ä
R2

t2

ä
.

L ≈ R2

t2
disc. error :

T 2L2d

N

Holden Lee (JHU) Diffusion Models 2024/2/23 21 / 40



Non-smooth setting: Bounding the space discretization error

Goal

Bound 𝜀space = E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2.

E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2 ≲ L2E ‖z‖2 ≲ dL2(s − t).

How to bound without smoothness assumption on pt?

New approach: Note that xt = 𝛼xs + z , where xs ∼ ps , z z Gaussian of variance
O(s − t). Suffices to bound Hessian

⃦⃦⃦⃦
∇2 ln pt(x)

⃦⃦
F

⃦⃦
𝜓1
≲ d

min{t,1}
at a random point
in a random direction, i.e., in Frobenius norm.
To deal with diverging bound, take geometrically decreasing step size.

Stopping at t0 = 𝛿, integrating gives
∫︀ T

𝛿
d

t∧1 dt = d ·
(︀
ln
(︀
1
𝛿

)︀
+ T

)︀
.

L ≈ R2

t2
⇝

√
d

t
disc. error :

T 2L2d

N
⇝

(︀
ln
(︀
1
𝛿

)︀
+ T

)︀2
d2

N
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Non-smooth setting: Bounding the space discretization error

Goal

Bound 𝜀space = E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2.

E ‖∇ ln pt(xt)−∇ ln pt(𝛼xs)‖2 ≲ L2E ‖z‖2 ≲ dL2(s − t).

How to bound without smoothness assumption on pt?

Subsequent work (Benton, De Bortoli, Doucet, et al. 2023): Bound E
⃦⃦
∇2 ln pt

⃦⃦2
F
by

deriving ODE for the expected value using stochastic localization.

L ≈ R2

t2
⇝

√
d

t
⇝

1

t
disc. error :

T 2L2d

N
⇝

(︀
ln
(︀
1
𝛿

)︀
+ T

)︀2
d2

N
⇝

(︀
ln
(︀
1
𝛿

)︀
+ T

)︀2
d

N
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SDE vs. ODE formulation

Denoising Diffusion
Probabilistic Modeling (SDE)

Probability Flow
(ODE)

dx→t = −x→t dt +
√
2 dWt

dx←t = x←t dt + 2∇ ln pT−t(x
←
t )⏟  ⏞  

≈sT−t(x←t )

dt +
√
2 dWt .

Convergence guarantees with O(d) steps.
(S. Chen, Chewi, J. Li, et al. 2023; H. Chen, L, and Lu

2023; Benton, De Bortoli, Doucet, et al. 2023)

Lower bound Ω(d) for trajectory-wise
analysis, even for critically damped
Langevin diffusion (S. Chen, Chewi, J. Li,
et al. 2023).

dx→t = −x→t dt −∇ ln pt(x
→
t ) dt

dx←t = x←t dt +∇ ln pT−t(x
←
t )⏟  ⏞  

≈sT−t(x
←
t )

dt.

Much faster (10x–50x) in practice
(J. Song, Meng, and Ermon
2020)...

...but can sometimes be less
stable.

This work: O(
√
d) steps using

corrector steps, assuming
smoothness.
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The trouble with SDE’s

DDPM:

dx←t = [x←t + 2∇ ln pT−t(x
←
t )] dt +

√
2 dwt

x←t+h ≈ x←t + h [x←t + 2∇ ln pT−t(x
←
t )] +

√
2h 𝜉, 𝜉 ∼ N(0, Id).

Discretization error from...

Drift term (order 1): O(Lh
√
d) → can take h = O

Ä
1

L
√
d

ä
.

Diffusion term (order 1/2): O(L
√
hd) → need to take h = O

(︀
1

L2d

)︀
.

Trajectories of Brownian motion are not smooth!

Probability flow ODE:

dx←t = [x←t +∇ log pT−t(x
←
t )] dt.
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Assumptions

Assumption

1. p0 has second moment Ep0 ‖x‖
2 = m2

2.

2. For each tk , the score estimate s has error

‖∇ ln ptk − stk‖
2
L2(ptk )

≤ 𝜀2sc.

3. ∇ ln pt is L-Lipschitz for every t.

4. The score estimate stk is L-Lipschitz for every tk .
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DPUM (Diffusion Predictor + Underdamped Modeling)

Theorem (DPUM, S. Chen, Chewi, L, Li, Lu, and Salim 2023)

Suppose that Assumptions hold. If ̂︀q denotes output of DPUM with 𝛿 ≍ 𝜀2

L2 (d+m2
2)
, then

TV(̂︀q, p0) ≲ (
√
d +m2

2)e
−T⏟  ⏞  

(1)

+ L1/2T𝜀sc⏟  ⏞  
(2)

+ L2Td1/2hpred⏟  ⏞  
(3a)

+ L3/2Td1/2hcorr⏟  ⏞  
(3b)

+ 𝜀⏟ ⏞ 
(4)

.

Setting T = Θ
(︀
ln(

d+m2
2

𝜀2
)
)︀
, hpred = ‹Θ( 𝜀

L2d1/2 ), hcorr = ‹Θ( 𝜀
L3/2d1/2 ), if 𝜀sc ≤ ‹O( 𝜀√

L
), then we

obtain TV error O(𝜀) with number of steps

N = ‹ΘÇL2d1/2

𝜀

å
.

Holden Lee (JHU) Diffusion Models 2024/2/23 26 / 40



DPUM (Diffusion Predictor + Underdamped Modeling)

Theorem (DPUM, S. Chen, Chewi, L, Li, Lu, and Salim 2023)

Suppose that Assumptions hold. If ̂︀q denotes output of DPUM with 𝛿 ≍ 𝜀2

L2 (d+m2
2)
, then

TV(̂︀q, p0) ≲ (
√
d +m2

2)e
−T⏟  ⏞  

(1)

+ L1/2T𝜀sc⏟  ⏞  
(2)

+ L2Td1/2hpred⏟  ⏞  
(3a)

+ L3/2Td1/2hcorr⏟  ⏞  
(3b)

+ 𝜀⏟ ⏞ 
(4)

.

1. Convergence of forward process

2. Score estimation error

3. Discretization error (predictor/corrector)

4. Early stopping
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Predictors and correctors (Y. Song, Sohl-Dickstein, Kingma, et al. 2020)

Predictor (P): Simulate the reverse SDE/ODE to track a time-varying distribution.

Corrector (C): Run MCMC (e.g., Langevin Monte Carlo) to converge towards a
stationary distribution.

Predictor-corrector (PC): Intersperse P & C steps.
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DPUM (Diffusion Predictor + Underdamped Modeling)

Algorithm

Draw ̂︀x0 ∼ N(0, Id).

For n = 0, . . . , LT − 1:

Predictor: Starting from ̂︀xn/L, run the discretized probability flow ODE from time n
L to n+1

L
with step size hpred to obtain ̂︀x ′n+1

L

.

x←t+h = ehx←t + (eh − 1)sT−t(x
←
t ).

Corrector: Starting from ̂︀x ′n+1
L

, run underdamped LMC for time 1√
L
with step size hcorr to

obtain ̂︀x n+1
L
.

Return ̂︀xT .
Note: For technical reasons, we need to modify the above algorithm to use geometrically decreasing

step sizes in the last stage and employ early stopping.
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Challenges

Problem: Cannot use Girsanov’s Theorem with ODE’s.
Solution: Use Wasserstein analysis with coupling.

Problem: Distance grows exponentially with rate L; can only run for time O(1/L).
Solution: Convert Wasserstein to TV error with a corrector step (short-time regularization).
Using data processing inequality for TV distance, we can restart coupling.
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Corrector: Langevin dynamics

SDE-based method to sample from p(x) ∝ e−f (x):

Overdamped:

dxt = −∇f (xt) dt +
√
2 dBt

Underdamped:

dxt = vt dt

dvt = −∇f (xt) dt − 𝛾vt dt +
√︀

2𝛾 dBt

Problem: Overdamped Langevin needs O(d) steps.
Solution: Use underdamped Langevin (Langevin “with acceleration”), which needs O(

√
d)

steps.
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Summary of convergence bounds

Algorithm Assumptions to get error 𝜀0
Lipschitzness 𝜀sc ≤ ? Error guarantee Steps

DDPM ∀t,∇ ln pt ‹O(𝜀0)
√︀
KL(p0||q̂T ) O

(︁
dL2

𝜀20

)︁
DDPM* ∇ ln p0 ‹O(𝜀0)

√︀
KL(p0||q̂T ) O

(︁
d2(ln L)2

𝜀20

)︁
DDPM* None ‹O(𝜀0)

√︀
KL(p𝛿||q̂T−𝛿) O

(︁
d2 ln(1/𝛿)2

𝜀20

)︁
DDPM♡ None ‹O(𝜀0)

√︀
KL(p𝛿||q̂T−𝛿) O

(︁
d ln(1/𝛿)2

𝜀20

)︁
PF♢ Jacobian error ‹O(𝜀0/

√
d) TV(p0, q̂T ) O

Ä
d2

𝜀0

ä
DPUM† ∀t,∇ ln pt & st ‹O(𝜀0/

√
L) TV(p0, q̂T ) O

Ä
d1/2L2

𝜀0

ä
*: H. Chen, L, and Lu 2023.
†: Probability flow + underdamped corrector, S. Chen, Chewi, L, Li, Lu, and Salim 2023.
♡: Benton, De Bortoli, Doucet, and Deligiannidis 2023
♢: G. Li, Wei, Y. Chen, and Chi 2023
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1 Introduction
Diffusion models in generative modeling
The score function

2 Convergence theory given an accurate score function
Convergence for general distributions without smoothness
Faster convergence with the probability flow ODE

3 Learning the score function
Gaussian mixture
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We’ve reduced the problem to learning the score, now what?

Sampling is as easy as learning the score function

We can efficiently sample from the data distribution if we have L2(p)-accurate score estimates
at the different noise levels.

Question 2

When can we obtain a L2(p)-accurate score estimate?

Can we come up with any nontrivial problem where diffusion models provably learn a
distribution better than (or as well as) other known methods?
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Gaussian mixture

Problem

Learn a mixture of gaussians from samples:

X ∼
k∑︁

i=1

pi𝒩 (𝜇i , In), i.e., p(x) ∝
k∑︁

i=1

pi exp

Ç
−‖x − 𝜇i‖2

2

å
.

Efficient algorithms rely on parameter learning, which
fail without Ω(

√
ln k) separation (Regev and

Vijayaraghavan 2017).

Diakonikolas and Kane 2020: Algorithm based on
algebraic methods with time/sample complexity

poly
(︀
n, k , 1𝜀

)︀
+

(︀
k
𝜀

)︀O(ln2 k)
.

We show that diffusion models can also learn with
quasi-polynomial time and samples, giving a
completely different approach to this problem!
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Gaussian mixture

Problem

Learn a mixture of gaussians from samples:

X ∼
k∑︁

i=1

pi𝒩 (𝜇i , In), i.e., p(x) ∝
k∑︁

i=1

pi exp

Ç
−‖x − 𝜇i‖2

2

å
.

Observation: Score function is exactly a softmax neural network with 1 hidden layer (and
skip-connection).

∇ ln p(x) =

∑︀k
i=1 𝜇iexp (⟨x , 𝜇i ⟩)∑︀k
i=1 exp (⟨x , 𝜇i ⟩)

− x = E[𝜇| x ]− x . (1)

Shah, S. Chen, and Klivans 2023: Gradient descent with diffusion models learns a mixture
of 2 gaussians, or K gaussians with separation (with warm start)—does as well as EM.
Gatmiry, Kelner, and L 2024: (1) can be learned with quasi-polynomial complexity
without separation conditions!
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Learning gaussian mixture with diffusion model

Problem

Learn P0 = Q0 * 𝒩 (0, In) from samples where Q0 is made up of k clusters:

The support of Q0 can be covered with k balls of radius O(1),

each with probability ≥ 𝛼min under Q0.

Theorem (Gatmiry, Kelner, and L 2024)

For 𝜀 < 𝛼min, diffusion models can learn a distribution that is 𝜀-close in TV distance to P0

with time and sample complexity npoly log(n,k,
1
𝜀
).

Corollary (Manifold learning)

Suppose that Q0 is supported on a set M that can be covered with Cd balls of constant
radius, each with Q0-probability ≥ 1

Cd . Then diffusion models can learn a distribution 𝜀-close

in TV distance to P0 with time and sample complexity npoly(d ,ln n,lnC ,ln(
1
𝜀))
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Score function of gaussian mixture

𝜇 ∼ Q0, 𝜉1, 𝜉2 ∼ 𝒩 (0, In),

X = 𝜇+ 𝜉1,

Y = X +
√
t𝜉2 = 𝜇+ 𝜉1 +

√
t𝜉2.

Consider the case of 1 cluster (Supp(Q0) ⊆ BR(0)).
It suffices to learn (as a supervised problem)

f𝜎2(y) := y + 𝜎2∇ ln pt(y) = E[𝜇|Y = y ] =
1

𝜎2

Ñ
−y +

∫︀
Rn 𝜇 exp

(︁
⟨y ,𝜇⟩
𝜎2 − ‖𝜇‖2

2𝜎2

)︁
dQ0(𝜇)∫︀

Rn exp
(︁
⟨y ,𝜇⟩
𝜎2 − ‖𝜇‖2

2𝜎2

)︁
dQ0(𝜇)

é
where t = 1 + 𝜎2.
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Key technique: Noise stability

Smooth functions on 𝒩 (0, 𝜎2In) can be efficiently learned via low-degree polynomials.
Measure smoothness using the generator of the Ornstein-Uhlenbeck process:

L f (x) = − 1

𝜎2
⟨x ,∇f (x)⟩+Δf (x).

Theorem (Noise stability implies low-degree approximability)

Suppose that ‖L f ‖L2(𝒩 (0,𝜎2In))
≤ L. Then there exists a polynomial g of degree < d such

that

‖f − g‖L2(𝒩 (0,𝜎2In))
≤ L𝜎2

d
.

Problem: Requires degree 1
𝜀 degree to get 𝜀 accuracy.
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Key technique: Noise stability

Smooth functions on 𝒩 (0, 𝜎2In) can be efficiently learned via low-degree polynomials.
Measure smoothness using the generator of the Ornstein-Uhlenbeck process:

L f (x) = − 1

𝜎2
⟨x ,∇f (x)⟩+Δf (x).

Theorem (Noise stability implies low-degree approximability)

Suppose that ‖L mf ‖L2(𝒩 (0,𝜎2In))
≤ Lm. Then there exists a polynomial g of degree < d such

that

‖f − g‖L2(𝒩 (0,𝜎2In))
≤
Å
L𝜎2

d

ãm
.

Problem: Requires degree 1
𝜀 degree to get 𝜀 accuracy.

Solution: Iterate L ! (Take m = ln
(︀
1
𝜀

)︀
.)
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Calculation

Taking derivatives of ∇ ln pt gives moments under the posterior distribution ⟨·⟩ := EX |Y [·].

Lemma

Let f (y) = y +∇ ln p(y). We have

L d f (y) =

∞
x (1)

∑︁
s+t≤d

∑︁
i ,i ′∈[2d+1]s ,j∈[2d+1]t

ai ,i ′,j𝜎
−2(s+t+d)

s∏︁
ℓ=1

¨
x (iℓ), x (i

′
ℓ)
∂ t∏︁
m=1

¨
x (jm), y

∂∫
where

∑︀
i ,i ′,j |ai ,i ′,j | ≤ 30dd!2, and x (i) are independent draws from the posterior X |Y = y.

Lemma

Suppose Q0 is supported on BR(0), R ≥ 1. Then

‖L mf ‖L2(P0)
= R · O

(︁
m2R2

(︁
1 +

m

R

)︁)︁m
.
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The rest of the proof

Goal: Learn P0 = Q0 * 𝒩 (0, In) from samples where Q0 is made up of k clusters.
Problem: Multiple clusters.

Do piecewise polynomial regression on Voronoi cells around warm starts.

Inductively maintain warm starts (from high to low noise level) by using score estimates:

f𝜎2(y) = y + 𝜎2∇ ln pt(y) = E[𝜇|Y = y ] = 𝜇+ O(𝜎
»

ln(1/𝛼min)).

Problem: Change of measure between 𝒩 (𝜇̂i , 𝜎
2In) and P0|Vi

, where 𝜇̂i is center of Voronoi
cell Vi .

Surprisingly delicate: Need to take d = Ω(ln2
(︀
1
𝜀

)︀
)-degree polynomial to get 𝜀 error.

Polynomials grow quickly: Naive change of measure gives 𝜀 · Ω(1)
√
d ≫ 1.

First compare f to smoothed version of f , so Hermite coefficients now decay
exponentially.
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Conclusion

Question 1

What guarantees can we obtain for sampling from p given a L2(p)-accurate score estimate?

[H. Chen, L, and Lu 2023]. Smoothing properties of the forward process lead to good
convergence rates for arbitrary data distributions.
[S. Chen, Chewi, L, Li, Lu, and Salim 2023] Using an ODE instead of SDE, in conjunction
with a corrector step, can reduce dimension dependence from O(d) to O(

√
d).

Question 2

When can we obtain a L2(p)-accurate score estimate?

[Gatmiry, Kelner, and L 2024] The score function can be efficiently learned for mixtures
of (identity-covariance) gaussians—including when the mixing measure is close to a
low-dimensional manifold—giving an end-to-end learning result.

Thanks to collaborators: Hongrui Chen, Sitan Chen, Sinho Chewi, Khashayar Gatmiry,
Jonathan Kelner, Yuanzhi Li, Jianfeng Lu, Adil Salim, Yixin Tan.
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Open directions

Question 1

What guarantees can we obtain for sampling from p given a L2(p)-accurate score estimate?

Use insights from numerical analysis, geometry of probability distributions, structure of
distributions (low-dimensionality, Fourier/multiscale, coming from function space...), etc.

One/few-step generation: progressive distillation, consistency models, ...

Question 2

When can we obtain a L2(p)-accurate score estimate?

Other families of distributions that allow efficient learning?

Tradeoffs compared to other generative models? (Sometimes makes problems intractable!
Ghio, Dandi, Krzakala, et al. 2023)

Efficient learning with neural networks?

“Learning” beyond L2(p)-accurate score and 𝜀-closeness in distributional distance?
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Proof outline for Probability flow ODE

1. Predictor analysis

(a) Score perturbation lemma

2. Corrector analysis

(a) Short-time regularization

3. Combining bounds for predictor and corrector
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1a. Score perturbation lemma

Lemma (Score perturbation)

Suppose q→t is the density of the OU process at time t, started at q→0 , and yt follows the
probability flow ODE. Suppose for all t and all x that

⃦⃦
∇2 ln q→t (x)

⃦⃦
op

≤ L, where L ≥ 1.
Then,

E[‖𝜕t∇ ln q→t (yt)‖2] ≲ L2d

Å
L+

1

t

ã
.

Previous work (L, Lu, and Tan 2022) only gave a 1
2 -Hölder continuity bound.
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1a. Score perturbation lemma

Lemma (Score perturbation)

Suppose q→t is the density of the OU process at time t, started at q→0 , and yt follows the
probability flow ODE. Suppose for all t and all x that

⃦⃦
∇2 ln q→t (x)

⃦⃦
op

≤ L, where L ≥ 1.
Then,

E[‖𝜕t∇ ln q→t (yt)‖2] ≲ L2d

Å
L+

1

t

ã
.

Proof sketch: Consider simpler setting where pt = p0 * N(0, t), p0 ∝ e−V

Key identity: ∇ ln pt(y) = −EP0|t(·|y)(∇V )

where P0,t is the joint distribution of X0 ∼ p0 and Xt = X0 +
√
tZ , Z ∼ N(0, I ).
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1a. Score perturbation lemma

Lemma (Score perturbation)

Suppose q→t is the density of the OU process at time t, started at q→0 , and yt follows the
probability flow ODE. Suppose for all t and all x that

⃦⃦
∇2 ln q→t (x)

⃦⃦
op

≤ L, where L ≥ 1.
Then,

E[‖𝜕t∇ ln q→t (yt)‖2] ≲ L2d

Å
L+

1

t

ã
.

Key identity: ∇ ln pt(y) = −EP0|t(·|y)(∇V ) pt = p0 * N(0, t), p0 ∝ e−V .

Bound in terms of L2 ·W 2
1 (P0|t+Δt(·|xt),P0|t(·|xt)).

Bound W 2
1 by KL(P0|t+Δt(·|xt)‖P0|t(·|xt)) by Talagrand’s transport cost inequality and

strong log-concavity of posterior (for t ≤ 1
2L).

Bound by KL(P0,t+Δt‖P0,t), which can be explicitly calculated.
Holden Lee (JHU) Diffusion Models 2024/2/23 6 / 9



1. Predictor analysis

For simplicity, consider t > 1
L .

E[‖𝜕t∇ ln q→t (yt)‖2] ≲ L3d∫︀ t
s , C-S=⇒ E

î
‖∇ ln q→t (xt)−∇ ln q→s (xs)‖2

ó
≲ L3dh2

Grönwall
=⇒ W2(qP

t0,h
ODE, q

̂︀Pt0,h
ODE) ≲ L3/2d1/2h2 + h𝜀sc

1
Lh

steps
=⇒ W2(qP

t0,h× 1
Lh

ODE , q ̂︀Pt0,h× 1
Lh

ODE ) ≲ L1/2d1/2h +
𝜀sc
L
.

Last step uses Lipschitzness of score estimate. Because distance is multiplied by eLT , we need
to take T = O(1/L).
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2. Corrector analysis

Lemma (Short-time regularization, Guillin and Wang 2012)

For Tcorr =
1√
L
, q = stationary distribution, the continuous dynamics satisfies

TV(pPN
ULD, q) ≲

»
KL(pPN

ULD‖q) ≲
√
LW2(p, q).

This converts Wasserstein distance to TV distance (with an extra
√
L factor). Combined with

a discretization analysis,

TV(p ̂︀PN
ULMC, q) ≲

√
LW2(p, q)⏟  ⏞  

(1)

+
𝜀sc√
L⏟ ⏞ 

(2)

+
√
Ld h⏟  ⏞  
(3)

.

1. Short-time Regularization Lemma.

2. Score estimation error (for time 1√
L
).

3. Discretization error of underdamped Langevin.
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3. End-to-end analysis

Predictor: W2(q ̂︀PNpred

ODE , qP
Npred

ODE ) ≲
√
Ldhpred +

𝜀sc
L⏟  ⏞  

Corrector: TV(p ̂︀PN
ULMC, q) ≲

√
LW2(p, q) +

√
Ld hcorr +

𝜀sc√
L
.

1-stage of predictor (time 1/L) and corrector (time 1/
√
L):

TV(p ̂︀PNpred

ODE
̂︀PNcorr
ULMC, qt0+Tpred

)

≤ TV(p, qt0) + O
(︁√

L
√
Ld hpred +

√
Ld hcorr +

𝜀sc√
L

)︁
.

Predictor + corrector for time T : (×LT )

TV(̂︀q, p0) ≲ (
√
d +m2

2)e
−T + TL2d1/2hpred + TL3/2d1/2hcorr + TL1/2𝜀sc.
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