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Learning in High Dimensions is Hard

® High-dimensional problems (i.e., many variables relative to

number of observations) are hard for machine learning and
statistics.

® ‘The curse of dimensionality dooms inference in the absence of
structural assumptions on the data.

® Manifold Hypothesis: data lies near low-dimensional subspace or
manifold. Use local Euclidean distances to construct global

distances (e.g., geodesics, Laplacian embeddings, diffusion
distances,...)
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Beyond the Euclidean

® Manifold learning methods based on local Euclidean distances
may be insufficient to capture the geometry of certain data.

* Toy Example: black and white images with single white pixel:

® Hverything 1s equally far in |
any graph metric.

Huclidean distance, and therefore in

® Need to capture the distance between the support of these images.



Data as Measures & 2-Wasserstein Space

® Jet Pz,aC(Rd) denote the space of absolutely continuous measures
(1.e., having density with respect to the Lebesgue measure) with finite
second moment.

® For W,V < Pz,aC(Rd) , the 2-Wasserstern metric 1s

WEn) = min [ (|T(2) - al3du(a)

where the minimization is over all maps 7" : Re —s RY that
pushforward @ onto v:

THp=v < V[B] — M[T_l(B)] for all Borel sets B .
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Optimal Transport Maps

e Pushforwards transfer mass from one distribution to anothet.
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* The T realving W3 (0.v) = [ ||T"(2) = a3
Rd
1s the optimal transport map.
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Averaging in V> : Barycenters

p
o Tet AP = {)\(Al,...,Ap)ERpZ)\Z'>O,Z)\Z’1}.

1=1

o For measures { i }_; C Paac(RY) and coordinates \ € AP,
define the Womem‘em-Z barycenter as

V) = argmin NWs (v, i)
vePo aC(Rd) Z
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Barycenters Preserve Shape

Ny

Euclidean Mixture Wasserstein Barycenter
p 1 p
. 2
Z i [ argmin o Z AW (v, i)
i—1 vEP2,ac(RY) < 4
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Wasserstein Geodesics are Barycenters

linear interpolation

t— (1 —1t)u+tv

Wasserstein geodesic
(McCann interpolation)

ts [(1— OId + tT7, |
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The Barycentric Coding Model

® Let Bary({ui}i—q) = {va : A € AP} be the set of all
barycenters that can be generated from {u;};_; .

e We denote by the barycentric coding model/ (BCM) the identification

of a2 measure

po € Bary({pi}i_1)

with its coordinates )\ € AP .

® Bary({u;},_,) can be thought of as the “span™ of the
reference measures, but with respect to the geometry of

Wasserstein space.

Tufts
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The Analysis Problem

¢ (iven a measure g and
reference measures {4 }r_q ,
the analysis problem solves

T2
arg min W5 (po, V) -
A EAP

o If o€ Bary({u;}'_,),
then:

in W; = 0.
min W' (zo, V)

® (an be thought of as histogram regression (Bonneel, Peyré, &
Cuturi).

UNIVERSITY
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Exact Coefficients in BCM via Quadratic Program

Theorem. (Werenski et al.) Suppose {u;}._y are sufficiently reqular. Then py € Bary({u;}i_,) if and only
if

min AT A\ =0,
AEAP

where A € RP*P is given by Aij = [pa(Ti(z) —1d(z), Tj(x) — Id(x))dpo(x) for T; the optimal transport map
between o and p;. Furthermore, if the minimum value is 0 and A\ s an optimal argument, then g = vy, .

Remark: Holds in the exact case and can be generalized to compatible
measures (when pairwise OT maps factor via composition).

) Tufts
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Estimation of BCM Coordinates

Algorithm 1 Estimate A

Input: i.i.d. samples { X1, ..., Xon} ~ po, {{Y7,...,Y,'} ~ p; : it = 1,..., p}, regularization parameter ¢ > 0.
for:=1,....p do
Set M* € R™™ with M}, = H1X; = Y3
Solve for ¢* as the optimal ¢ in

entropy-regularized dual
AN formulati
max — Y fi+-—> g ormulation
hoerm i "= (Kantorovich; Cuturi)
€ n
- Zexp ((f‘7 + gk — Mjk)/e)
7,k
- 1, 1 .
> Yiexp (—(gZ(Y;-) — 5l - Yng)) entropy-regularized O'T
. . € :
Define T;(z) = =5 . map (Pooladian &
1, . 1 :
Zexp (Z(g"‘(YZ) — §HZC — Y;Hg)) Niles-Weed)
1=1
end for
Set A € RP*P to be the matrix with entries
A 1 2n
Aij == > (Ti(Xk) — Xi, Tj(Xi) — X
k=n-+1

Return \ = arg min AT AN.
AEAP

Tufts
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Consistency of Entropic Estimation

Theorem. (Werenski et al.) Let,j € {1,...,p} and suppose that p;, p;, jto are supported on bounded domains
and that the maps T; and T} are sufficiently reqular. Let Xy, ..., Xon ~ po, Y1,..., Y0 ~ i, Z1,..., Ly, ~ ;.
For an appropriately chosen ¢, let T; and Tj be the entropic maps computed using {X;}i— 1, {Yii—1, {Z:}7.
Then we have

2n
1 . .
E Aij — ﬁ k:zn;_l<T@(Xk) — XkaT](Xk:) T Xk‘> ]
1 ___atl
S -+ 0 TR g

where d' = 2[d/2]|, and o < 3 depends on the regularity of optimal maps.

Corollary. (Werenski et al.) Let \ be the random estimate obtained from Algorithm 1. Suppose that A has
an eigenvalue of 0 with multiplicity 1 and that \. € AP realizes A\ A\, = 0. Then under the assumptions of

the Theorem,

~ 1 . at1
E[|| A —)\*Hg] < % +n A@+a+D) 4 /log n.

¢ (Convergence rate depends (poortly) on dimensionality and smoothness of OT
maps.

® Regularity theory for OT maps relevant. Estimation of maps is provably hard! T“fts
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Image Recovery

Input Linear Recovery BCM Recovery Ground Truth

Remark: compared to running gradient descent, our closed-form
program gives similar results with faster runtime.
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Learning Reference Measures

® For a fixed dictionary Z = {%;};.; C P(R?Y) and X € A™,
let

Bary(Z, A)

denote the barycenter generated from & with coordinates \.

o Given observed data {; }i.1, Wasserstein dictionary learning

(WDL.) (Schmitz et al.) solves:

(7", A") = argm1nZW2 (Bary(Z, A\;), i),
g,A

Tufts
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WDL Can Be Ill-Posed

e Toy Example {; }i_q live on the Wasserstein geodesic
between , v

® Then any measures i, that “extend” this geodesic can also
generate { ;b4

Tufts

17



Geometric Wasserstein Dictionary Learning (GeoWDL)

n

12: (D), i)-

1=1 7=1

G(2, A {pi}iey) ==Y W3 (Bary(2,\i), i) + pRa (2, M),

1=1

\4 \4

® |.carn a dictionary that reconstructs well using nearby atoms; p > 0.

* GeoWDL: (2", A") =argminG(2, A, {u;}—).
g,A
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Coding & Recovery Results

Consider the coding problem for a fxed dictionary:

arg min Aj W2 (9;,
Y AW
subject to u = Bary(Z, \).

Generically, this has a unique solution and in particular resolves
non-unique reconstruction 1Ssues.

Coefficient Properties, Informal: Under particular generative models
for u, the optimal coetticients concentrate and can exhibit sparsity.

Tufts
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Provable Learning of Generators

® Global Recovery, Informal: 1t data lives on a Wasserstein geodesic
(1.e., set of barycenters generated by i, V), minimizing the
geometric regularizer subject to pertect reconstruction learns p, U .

Geometric regularizer prevents learning these “extensions.”

Tufts
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Reduced Order Modeling for MDS

Time

Molecular dynamics simulations (MDS) are a crucial tool in
computational chemistry.

High-dimensional time series—want to identity canonical
configurations (metastable states).

How to characterize the global dynamics of the system?

) Tufts



“Cluster Analysis of Trajectories Based on Segment Splitting”

o CATBOSS: Cluster time

seg/ments, not points.

Compare segments using
Wasserstein distances.

Improve speed, gain
robustness to random
fluctuations around a
metastable state.

CATBOSS
Segment-
based
clustering
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Beyond Metastable States: Capturing Transitions

® Abrupt changes sometimes occur depending on sampling
resolution, but gradual transitions also occur.

¢ [How to characterize and learn them?

Abrupt transition Gradual transition
200 l . . -
g 100 | | | )
S 0, s y
-100 ~ ~ - 1 ~
0 50 100 150 200 250 300

Time step

Tufts
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BarT: Barycentric Modeling of MDS Transitions

® [Idea: transition regions are sampled from Wasserstein barycenters of two
metastable states.

® BarT: incorporate this into change point detection and clustering.
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¢ [Limitation: initial efforts put parametric assumptions on metastable
states (therefor on transition regions). WDL for non-parametric caser? Tufts
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