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Markov Decision Process

Reward Optimization

max
θ
J (θ) := Ex∼πθ [R(x)]

Motivation: convergence of the finite
expression method (Liang and Yang, 2022)

Can be solved by the stochastic policy
gradient method (Williams, 1992).

x := {st , at , rt+1}∞t=0: trajectory.

R(x) :=
∑∞

t=0 γ
trt+1.

πθ(x) := ρ(s0)
∞∏
t=0

P(st+1|st , at)π̃θ(at |st).

S : State space.

A: Action space.

R : S × A→ [−U,U]:
reward function.

P(s ′|s, a) state transition
probability.

π̃θ(·|·) : A× S → [0, 1]:
policy parameterized by θ.

γ ∈ [0, 1): discount factor.

ρ : initial state distribution.
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Performative Prediction

Performative Prediction (Perdomo et al., 2020)

min
x
J (x) := Ez∼D(x)[`(z , x)]

Stochastic optimization with decision-dependent distributions.

`: loss function is assumed to be smooth and strongly convex.

Theorem

If the loss is smooth, strongly convex, and the mapping D(·) is sufficiently
Lipschitz, then the repeated risk minimization:

xt+1 = argminx Ez∼D(xt)[`(z ; x)], t ≥ 0, (not practical)

converges to the performative stationary point:

xPS := argmin Ez∼D(xPS )[`(z , x)]

at a linear rate.
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Thinking

The model can not handle constraints on the decision variable.

The repeated risk minimization is not practical.

Global convergence.

The inner loss function ` needs to be strongly convex.
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Regularized Expected Reward Optimization

Regularized Performative Prediction (Drusvyatskiy and Xiao, 2023)

min
x

Ez∼D(x)[`(z , x)] + r(x)

r : convex regularizer (e.g., indicator functions), could be nonsmooth.

Classical stochastic algorithms, originally designed for static problems, can
be applied directly for finding such performative stability with little loss in
efficiency.
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Regularized Expected Reward Optimization

Our model

max
θ
F(θ) := Ex∼πθ [Rθ(x)]︸ ︷︷ ︸

J (θ)

−G(θ)

J can be non-concave while G is assumed to be a convex regularizer.

Can the Stochastic Proximal Gradient Method:

θt+1 = ProxηG
(
θt + ηg t

)
, g t ≈ ∇J (θt).

be applied to the nonconcave maximization problem?

What are the convergence properties?

Can the Variance Reduction be applied to get better results?
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Policy Gradient

Conditions on Rθ

1 Rθ(·) is πθ -integrable for any θ ∈ Rn and supθ,x |Rθ(x)| ≤ U.

2 Rθ(·) is twice continuously differentiable with respect to θ, and there exist positive constants C̃g and C̃h such that

sup
θ,x
‖∇θRθ(x)‖ ≤ C̃g , sup

θ,x

∥∥∥∇2
θRθ(x)

∥∥∥
2
≤ C̃h.

Conditions on πθ

The function log πθ(x) is twice differential with respect to θ ∈ Rn and there exist positive constants Cg and Ch such that

sup
x∈Rd , θ∈Rn

‖∇θ log πθ(x)‖ ≤ Cg , sup
x∈Rd , θ∈Rn

∥∥∥∇2
θ log πθ(x)

∥∥∥
2
≤ Ch.

The policy gradient (Sutton and Barto, 2018)

∇θJ (θ) := Ex∼πθ [Rθ(x)∇θ log πθ(x) +∇θRθ(x)] .

L-Smoothness:
∥∥∇θJ (θ)−∇θJ (θ′)

∥∥ ≤ L
∥∥θ − θ′∥∥, L > 0.

10 / 17



Stochastic Proximal Gradient Method

Stochastic gradient estimator: g t .

Proximal gradient update: Prox.

Output strategy.
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Convergence Properties

First-order Stationary Point

0 ∈ −∇θJ (θ) + ∂G(θ)

⇔ dist(0,−∇θJ (θ) + ∂G(θ)) = 0

⇔ 0 = Gη(θ) :=
1

η
[ProxηG (θ + η∇θJ (θ))− θ]

Theorem

Under suitable conditions, let ε > 0 be a given accuracy. Running the Algorithm 1
for T = O(ε−2) iterations with the learning rate η < 1

2L and the sample size

N := O(ε−2) outputs a point θ̂T satisfying

ET

[
dist

(
0,−∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]
≤ ε2.

Moreover, the sample complexity is O(ε−4).
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Global Convergence

Gradient Domination

‖Gη(θ))‖ ≥ 2
√
ω (F∗ −F(θ)) , ∀ θ ∈ Rn,

Gradient Domination is related to PL condition and KL condition in the field
of optimization.

Running Algorithm 1 for T = O(ε−2) iterations:

ET

[
F∗ −F(θ̂T )

]
≤ 1

2
√
ω
ε.

MDP satisfies the gradient domination (Agarwal et al., 2021).

Our model: no explicit structures as in MDP, remains open.
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PAGE: ProbAbilistic Gradient Estimator

Importance Sampling Based PAGE (Li et al., 2021)

g t+1 =


1

N1

N1∑
j=1

g(x t+1,j , θt+1), w.p. p,

1

N2

N2∑
j=1

g(x t+1,j , θt+1)− 1

N2

N2∑
j=1

gw (x t+1,j , θt , θt+1) + g t , w.p. 1− p,

,

where gw (x , θ, θ′) = πθ(x)
πθ′ (x)g(x , θ).

Strong conditions on gw is needed.
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Improved Complexity via Variance Reduction

Theorem

Under suitable conditions. For a given ε ∈ (0, 1), we set p := N2

N1+N2
with

N1 := O(ε−2) and N2 :=
√
N1 = O(ε−1). Choose a learning rate η satisfying

η ∈
(

0,
L

2C + 2L2

]
.

Then, running the algorithm for T := O(ε−2) iterations outputs a point θ̂T

satisfying

ET

[
dist

(
0,−∇θJ (θ̂T ) + ∂G(θ̂T )

)2
]
≤ ε2.

Moreover, the total expected sample complexity is O(ε−3).
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Summary

Stochastic proximal gradient method for (nonconcave) regularized expected
reward optimization.

Improve sample complexity via variance reduction.

How to obtain global convergence? More applications?

Convergence to performative stability?

How to relax the employed conditions?

Acceleration?

Practical performance?
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Questions

17 / 17


	Introduction
	Markov Decision Process
	Performative Prediction
	Regularized Expected Reward Optimization

	The Stochastic Proximal Gradient Method
	Policy Gradient
	Convergence Properties

	Variance Reduction with PAGE
	ProbAbilistic Gradient Estimator
	Improved Complexity via Variance Reduction

	Summary

