On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization

Ling Liang

Joint work with: Haizhao Yang University of Maryland, College Park

February 22, 2024, Brin MRC

Workshop on Scientific Machine Learning: Theory and Algorithms

Outline

Introduction

- Markov Decision Process
- Performative Prediction
- Regularized Expected Reward Optimization
- The Stochastic Proximal Gradient Method
 - Policy Gradient
 - Convergence Properties
- 3 Variance Reduction with PAGE
 - ProbAbilistic Gradient Estimator
 - Improved Complexity via Variance Reduction

Markov Decision Process

Reward Optimization

$$\max_{\theta} \mathcal{J}(\theta) := \mathbb{E}_{x \sim \pi_{\theta}}[\mathcal{R}(x)]$$

- Motivation: convergence of the finite expression method (Liang and Yang, 2022)
- Can be solved by the stochastic policy gradient method (Williams, 1992).

Markov Decision Process

Reward Optimization

$$\max_{\theta} \mathcal{J}(\theta) := \mathbb{E}_{x \sim \pi_{\theta}}[\mathcal{R}(x)]$$

- Motivation: convergence of the finite expression method (Liang and Yang, 2022)
- Can be solved by the stochastic policy gradient method (Williams, 1992).
- $x := \{s_t, a_t, r_{t+1}\}_{t=0}^{\infty}$: trajectory.
- $\mathcal{R}(x) := \sum_{t=0}^{\infty} \gamma^t r_{t+1}$.

•
$$\pi_{\theta}(x) := \rho(s_0) \prod_{t=0}^{\infty} P(s_{t+1}|s_t, a_t) \tilde{\pi}_{\theta}(a_t|s_t).$$

- S: State space.
- A: Action space.
- $R: S \times A \rightarrow [-U, U]$: reward function.
- P(s'|s, a) state transition probability.
- $\tilde{\pi}_{\theta}(\cdot|\cdot) : A \times S \to [0,1]:$ policy parameterized by θ .
- $\gamma \in [0, 1)$: discount factor.
- ρ : initial state distribution.

Performative Prediction

Performative Prediction (Perdomo et al., 2020)

$$\min_{x} \mathcal{J}(x) := \mathbb{E}_{z \sim \mathcal{D}(x)}[\ell(z, x)]$$

- Stochastic optimization with decision-dependent distributions.
- ℓ : loss function is assumed to be smooth and strongly convex.

Performative Prediction

Performative Prediction (Perdomo et al., 2020)

$$\min_{x} \mathcal{J}(x) := \mathbb{E}_{z \sim \mathcal{D}(x)}[\ell(z, x)]$$

- Stochastic optimization with decision-dependent distributions.
- ℓ : loss function is assumed to be smooth and strongly convex.

Theorem

If the loss is smooth, strongly convex, and the mapping $\mathcal{D}(\cdot)$ is sufficiently Lipschitz, then the repeated risk minimization:

 $x_{t+1} = \operatorname{argmin}_{x} \mathbb{E}_{z \sim \mathcal{D}(x_t)}[\ell(z; x)], \quad t \ge 0, \quad (not \ practical)$

converges to the performative stationary point:

$$x_{PS} := \operatorname{argmin} \mathbb{E}_{z \sim \mathcal{D}(x_{PS})}[\ell(z, x)]$$

at a linear rate.

- The model can not handle constraints on the decision variable.
- The repeated risk minimization is not practical.
- Global convergence.
- \bullet The inner loss function ℓ needs to be strongly convex.

Regularized Expected Reward Optimization

Regularized Performative Prediction (Drusvyatskiy and Xiao, 2023)

 $\min_{x} \mathbb{E}_{z \sim \mathcal{D}(x)}[\ell(z, x)] + r(x)$

- r: convex regularizer (e.g., indicator functions), could be nonsmooth.
- Classical stochastic algorithms, originally designed for static problems, can be applied directly for finding such performative stability with little loss in efficiency.

Algorithms	Iterate update with $z_t \sim \mathcal{D}(x_t)$
Proximal point	$x_{t+1} = \underset{x}{\arg\min} \ \ell(x, z_t) + r(x) + \frac{1}{2\eta_t} \ x - x_t\ ^2$
Prox-gradient	$x_{t+1} = \operatorname{prox}_{\eta_t r} \left(x_t - \eta_t \nabla \ell(x_t, z_t) \right)$
Accel. prox-grad.	$\begin{cases} x_t = \operatorname{prox}_{\eta_t r} \left(y_{t-1} - \eta_t \nabla \ell(y_{t-1}, z'_t) \right) \\ y_t = x_t + \beta_t (x_t - x_{t-1}) \end{cases} \text{ with } z'_t \sim \mathcal{D}(y_{t-1})$
Clipped gradient	$x_{t+1} = \arg\min_{x} \left(\ell(x_t, z_t) + \langle \nabla \ell(x_t, z_t), x - x_t \rangle \right)^+ + r(x) + \frac{1}{2\eta_t} x - x_t ^2$
Dual averaging	$x_{t+1} = \arg\min_{x} \left\langle \frac{1}{t} \sum_{i=1}^{t} \nabla \ell(x_t, z_t), x \right\rangle + r(x) + \frac{1}{2\eta_t} \ x - x_0\ ^2$

Table 1: Stochastic algorithms with state-dependent distributions.

Regularized Expected Reward Optimization

Our model

$$\max_{\theta} \ \mathcal{F}(\theta) := \underbrace{\mathbb{E}_{x \sim \pi_{\theta}} \left[\mathcal{R}_{\theta}(x) \right]}_{\mathcal{J}(\theta)} - \mathcal{G}(\theta)$$

- $\mathcal J$ can be non-concave while $\mathcal G$ is assumed to be a convex regularizer.
- Can the Stochastic Proximal Gradient Method:

$$\theta^{t+1} = \operatorname{Prox}_{\eta \mathcal{G}} \left(\theta^t + \eta g^t \right), \quad g^t \approx \nabla \mathcal{J}(\theta^t).$$

be applied to the nonconcave maximization problem?

- What are the convergence properties?
- Can the Variance Reduction be applied to get better results?

Policy Gradient

Conditions on \mathcal{R}_{θ}

2 $\mathcal{R}_{\theta}(\cdot)$ is twice continuously differentiable with respect to θ , and there exist positive constants \widetilde{C}_{g} and \widetilde{C}_{h} such that

$$\sup_{\theta,x} \|\nabla_{\theta} \mathcal{R}_{\theta}(x)\| \leq \widetilde{C}_{g}, \quad \sup_{\theta,x} \|\nabla_{\theta}^{2} \mathcal{R}_{\theta}(x)\|_{2} \leq \widetilde{C}_{h}.$$

Conditions on π_{θ}

The function log $\pi_{\theta}(x)$ is twice differential with respect to $\theta \in \mathbb{R}^n$ and there exist positive constants C_g and C_h such that

$$\sup_{x \in \mathbb{R}^d, \ \theta \in \mathbb{R}^n} \|\nabla_\theta \log \pi_\theta(x)\| \le C_g, \quad \sup_{x \in \mathbb{R}^d, \ \theta \in \mathbb{R}^n} \|\nabla_\theta^2 \log \pi_\theta(x)\|_2 \le C_h.$$

The policy gradient (Sutton and Barto, 2018)

 $\nabla_{\theta} \mathcal{J}(\theta) := \mathbb{E}_{x \sim \pi_{\theta}} \left[\mathcal{R}_{\theta}(x) \nabla_{\theta} \log \pi_{\theta}(x) + \nabla_{\theta} \mathcal{R}_{\theta}(x) \right].$

• L-Smoothness: $\|\nabla_{\theta} \mathcal{J}(\theta) - \nabla_{\theta} \mathcal{J}(\theta')\| \le L \|\theta - \theta'\|, L > 0.$

Algorithm 1 The stochastic proximal gradient method

- Input: initial point θ⁰, sample size N and the learning rate η > 0.
- 2: for $t = 0, \ldots, T 1$ do
- 3: Compute the stochastic gradient estimator:

$$g^{t} := \frac{1}{N} \sum_{j=1}^{N} g(x^{t,j}, \theta^{t}),$$

where $\{x^{t,1},\ldots,x^{t,N}\}$ are sampled independently according to $\pi_{\theta^t}.$

4: Update

$$\theta^{l+1} = \operatorname{Prox}_{\eta \mathcal{G}} \left(\theta^l + \eta g^l \right).$$

- 5: end for
- 6: Output: $\hat{\theta}^T$ selected randomly from the generated sequence $\{\theta^t\}_{t=1}^T$.

- Stochastic gradient estimator: g^t .
- Proximal gradient update: Prox.
- Output strategy.

Convergence Properties

First-order Stationary Point

$$egin{aligned} 0 &\in -
abla_{ heta}\mathcal{J}(heta) + \partial \mathcal{G}(heta) \ \Leftrightarrow \operatorname{dist}(0, -
abla_{ heta}\mathcal{J}(heta) + \partial \mathcal{G}(heta)) = 0 \ \Leftrightarrow 0 &= G_{\eta}(heta) := rac{1}{\eta} \left[\operatorname{Prox}_{\eta\mathcal{G}}\left(heta + \eta
abla_{ heta}\mathcal{J}(heta)
ight) - heta
ight] \end{aligned}$$

Theorem

Under suitable conditions, let $\epsilon > 0$ be a given accuracy. Running the Algorithm 1 for $T = O(\epsilon^{-2})$ iterations with the learning rate $\eta < \frac{1}{2L}$ and the sample size $N := O(\epsilon^{-2})$ outputs a point $\hat{\theta}^T$ satisfying

$$\mathbb{E}_{\mathcal{T}}\left[\operatorname{dist}\left(0,-
abla_{ heta}\mathcal{J}(\hat{ heta}^{ op})+\partial\mathcal{G}(\hat{ heta}^{ op})
ight)^{2}
ight]\leq\epsilon^{2}.$$

Moreover, the sample complexity is $O(\epsilon^{-4})$.

Gradient Domination

$$\| \mathcal{G}_\eta(heta)) \| \geq 2\sqrt{\omega} \left(\mathcal{F}^* - \mathcal{F}(heta)
ight), \quad orall \, heta \in \mathbb{R}^n,$$

- Gradient Domination is related to PL condition and KL condition in the field of optimization.
- Running Algorithm 1 for $T = O(\epsilon^{-2})$ iterations:

$$\mathbb{E}_{\mathcal{T}}\left[\mathcal{F}^* - \mathcal{F}(\hat{\theta}^{\mathcal{T}})\right] \leq \frac{1}{2\sqrt{\omega}}\epsilon.$$

- MDP satisfies the gradient domination (Agarwal et al., 2021).
- Our model: no explicit structures as in MDP, remains open.

Importance Sampling Based PAGE (Li et al., 2021)

$$g^{t+1} = \begin{cases} \frac{1}{N_1} \sum_{j=1}^{N_1} g(x^{t+1,j}, \theta^{t+1}), & \text{w.p. } p, \\ \frac{1}{N_2} \sum_{j=1}^{N_2} g(x^{t+1,j}, \theta^{t+1}) - \frac{1}{N_2} \sum_{j=1}^{N_2} g_w(x^{t+1,j}, \theta^t, \theta^{t+1}) + g^t, & \text{w.p. } 1 - p, \end{cases}$$

where $g_w(x, \theta, \theta') = \frac{\pi_{\theta}(x)}{\pi_{\theta'}(x)} g(x, \theta).$

• Strong conditions on g_w is needed.

Theorem

Under suitable conditions. For a given $\epsilon \in (0, 1)$, we set $p := \frac{N_2}{N_1 + N_2}$ with $N_1 := O(\epsilon^{-2})$ and $N_2 := \sqrt{N_1} = O(\epsilon^{-1})$. Choose a learning rate η satisfying

$$\eta \in \left(0, \frac{L}{2C + 2L^2}\right].$$

Then, running the algorithm for $T := O(\epsilon^{-2})$ iterations outputs a point $\hat{\theta}^T$ satisfying

$$\mathbb{E}_{\mathcal{T}}\left[\operatorname{dist}\left(0,-\nabla_{\theta}\mathcal{J}(\hat{\theta}^{T})+\partial\mathcal{G}(\hat{\theta}^{T})\right)^{2}\right] \leq \epsilon^{2}.$$

Moreover, the total expected sample complexity is $O(\epsilon^{-3})$.

- Stochastic proximal gradient method for (nonconcave) regularized expected reward optimization.
- Improve sample complexity via variance reduction.
- How to obtain global convergence? More applications?
- Convergence to performative stability?
- How to relax the employed conditions?
- Acceleration?
- Practical performance?

