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IN THE NEWS | October 29, 2014

VisiSonics' RealSpace 3D Audio
Pers O n al St O ry Software Licensed by Oculus for Virtual

Reality

Developed/commercialized 3D Spatial audio
rendering and personalization technology

Worked on wave propagation, vision, audition, FMM,
parallel computing, statistics EEXEEEEEEEEE

I\/IISSGd deep Iearnlng CEVA Acquires Spatial Audio Business
EXited in 2023 from VisiSonics to Expand its
Since Get Iinto learning based computational physics

@ MARYLAND FEARLESS IDEAS
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Two Themes for Current Research

Accelerating Deep Learning
FMM and Parallel Computing
O(N) Transformer -> on arXiv

Using ML and Differentiabllity to tackle
problems in Physics and Engineering

This talk

IIIIIIIIIIII

@ MARYLAND FEARLESS IDEAS



Aside - a recently submitted paper on arXiv

https://arxiv.org/abs/2402.07901

FASTFormer

Armin Gerami, Monte Hoover, Pranav Dulepet, Ramani Duraiswami
Perceptutal Interfaces and Reality Lab

PIRL




Complexity

Dimension per Head (D) = 32
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« To measure the expressivity, we use the Long Range Arena (LRA) benchmark. As we can see, our

Expressivity

speedup does not introduce a compromise in terms of expressivity.

@/ UNIVERSITY OF

FEARLESS IDEAS

Model ListOps Text Retrieval Image Pathfinder | Avg
Vanilla Trans. 38.37  61.95 80.69 40.57 65.26 57.37
Informer 36.95 63.60 75.25 37.55 50.33 52.74
Reformer 37.00 64.75 78.50 43.72 66.40 58.07
Linear Trans. 16.13 65.90 53.09 42.34 75.30 50.55
Performer 37.80 64.39 79.05 39.78 67.41 57.69
Fastmax2 (ours) 37.40 64.30 78.11 43.18 66.55 57.90
Fastmaxl (ours) | 37.20  63.25 78.21 42.76 66.67 57.62
e Our speedup is evident in LRA
Model ListOps Text Retrieval Image Pathfinder | Avg
(N =2000) (N =4000) (N =4000) (N =1000) (N = 1000)
Vanilla Trans. 6.4 1.8 1.7 3.0 6.1 3.8
Fastmax2 (ours) 11.6 6.1 6.9 3.0 6.8 6.9
Fastmax1 (ours) 47.4 26.7 24.7 12.8 24.4 27.2
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Deep Learning

* Incredible progress in data rich domains
* Images, Speech, Vision, Language
* Multiple such modalities

* Can capture

* Functions: Predict expected values from data - Input-output relations
* Distributions: Generate plausible outputs

* Goal: Figure out how to use deep learning in settings where
there are

 strong “forward” models
e data maybe sparse

* Not just use the forward solver to build datasets for learning



Model Size (in billions of parameters)

Deep network size
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Pillars of Scientific Discovery

Explainable
Experiment , Computational
e explain e Mathematical e Scientific e Learn from Data
observations Physics to Computing and e Deep Learning
e “Scientific generalize Numerical e Generalize
Method” e Equations and Analysis e Not yet very
initial/boundary e Further explainable
conditions generalize and
e generalizes explore

e |Inverse Problems



Back Propagation, the Computational Graph

* A less appreciated component of the DL revolution
e Automatic differentiation

e Simple compositional network models used in DL can be automatically
differentiated

* Parameters determined via optimization
e Stochastic Gradient Descent and ADAM flavors

* Even a high school student can build a cost function computation code
and then have their DL model trained

e Tensorflow, Pytorch
* Gives deep learning folk the feeling any problem can be fit in
 How to fit our forward models into this framework?



Relevant Research Streams

 Automatic Differentiation - classical field, but
very active in compilers and ML; Particularly
appreciated C. Elliott

Differentiable Probabilistic

Programming Programming

Neural Graphical
Networks Moels

 Differentiable Programming — several
frameworks to build gradients automatically

 Differentiable Physics — many researchers, but
found work of Nils Thuerey very accessible

* Neural Radiance Fields — very vibrant field;
has taken over computer graphics; starting

from Mildenhall et al 2020.
TN R
e, o Fyo ome &)
Sk - Julia SciML - 2017

Neural Radiance Fields

Google JAX - 2018 PyTorch - 2019




NeRF

* Given: a rendering equation and snapshots of the scene from different angles

* Objective: 3D scene representation
(i.e. learned functional representation of volumetric density, point color)

* Applications: 3D geometry extraction/Novel view synthesis

* Backpropagation — differentiation through forward solver

Neural

network
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Differentiable Physics — beyond creating data

o Gradient-based inverse problem optimization
o Possible with a differentiable physics-based forward model of the problem

observed / f Reconstruction _
data / L loss
A

FOrwa rd simulated
params |\/|Od€| result

—— e mm o mm m mm wm o




Differentiable Physics — beyond creating data

o Gradient-based inverse problem optimization
o Can use a trained NN to better condition the problem with learned priors from
a dataset

I
I
observed / _( Reconstruction !
data / 7L loss
A

_ N N model FO rwa rd simulated
params |V|Od€| result




Differentiable Physics — beyond creating data

o Gradient-based inverse problem optimization
o Canuse a NN to suggest which Physics model should be used!
o Perhaps trained via LLMs

e Many possible variations

? ] ( Physics
data b NN
L Model
i : |
'L _________________ { thsi§s } :

_____________________________




Differentiable Physics

o Gradient-based inverse problem optimization
o Use the data and process it with a physics-based forward model
o Have a trained NN which learns the predictions of the physics model

e Many possible variations

Physics W
data NN »  loss
o ¥
? r ‘,
i IL _________________ { Physit_:s }




Initial Projects

 Differentiable
* Electrical Impedance Tomography
* Room Acoustics Models
* DSP Filters
* Models of Human Hearing



Example: Electrical Impedance Tomography

* Problem: Reconstruct the distribution of impedances inside an object (“image”) by
applying current at some electrodes and taking measurements of the voltage at other
electrodes.

* Examples: Imaging gas bubbles in a liquid, cracks in a conducting material etc.

* The electric potential @ satisfies the Laplace equation where n is the outward normal
to the boundary and o is the electrical conductivity:

V.ieVep)=0in ) C R"

il

biect t {E and ¢ known at electrodes,
subject to

o
2 — () everywhere else.
i .

* |n applications with regions of vanishing conductivity., the task becomes to identify the
shapes of these regions.

* Boundary Element Method — A good choice of forward solver in these problems.

Duraiswami et al. "Boundary element techniques for efficient 2-D and 3-D electrical impedance tomography.” Chemical engineering science 52.13 (1997): 2185-2196.
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Many issues with practical implementation

 Started with trying to do our FMM BEM Solvers

e AD does not work well for complex problems
 Memory size grows very quickly for Scientific Computing

* Was finally able to solve this

* Many operations are not obviously differentiable
* Meshing
* Boolean decisions

* Linear Algebra beyond BLAS not yet differentiable
* Matrix decompositions

* Part of our longer-term research
* Indeed, Diff Physics folks mostly solve Burger’s equation!
* And NERF folks use a stochastic model!



How do we bring numerical analysis back into solving problems

Consider simplest linear least squares regression of
Ax = b with the cost function ||b — Ax||s

Automatic differentiation frameworks would be unable to come up with the
normal equations

At Axr = A%

Any self-respecting numerical analyst use rank-revealing (QR or regularized

SV D.
JAX will not be able to learn these from AD



A Differentiable Image Source Model
for Room Acoustics Optimization

Bowen Zhi, Alisha Sharma, Dmitry Zotkin, Ramani Duraiswami

Perceptual Interfaces and Reality Lab,

%@?’RS\EPO Computer Science & UMIACS,

> - University of Maryland, College Park
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Accurate room acoustics simulation with
Helmholtz and Eikonal solvers

upto 5120 Hz t=0ms

* Helmbholtz solvers: .

* Physically accurate full wave simulation

* We have efficient algorithms and solvers

* Including efficient GPU versions
* Eikonal solvers: “principled raytracing”

* Unlike raytracing for graphics, acoustic raytracing lacks
physical justification and cannot compute some important
real physical effects, e.g. diffraction and scattering.
Eikonal solvers address these points. Potter et al., (2022)




Differentiable Room Acoustics

o Differentiable image-source method
> Implemented in PyTorch!?]

o Input: room dimensions, wall materials, locations of source and receiver

o Output: room impulse resph(t)?

o For cuboid rooms, can obtain gradient w.r.t. all inputs
s Including geometry image source

W
133
I

(L,W,H,ag, ay) ‘&
<~

recavar

Y

Forward Map
Image Source Model

Room Design dP

Parameters (

[5] Paszke et al., Neurips, 2019 Backpropagate through the solver

Room Acoustic
Response



Differentiable Room Acoustics

o Differentiable image-source method

o Implemented in PyTorch
o Input: room dimensions, wall materials, locations of source and receiver
o Output: room impulse resph(t)?
o For cuboid rooms, can obtain gradient w.r.t. all inputs
s Including geometry

o Simple formulation
s Sum of delayed and attenuated impulses

h(t) =" (r—d;,/r ,_ /8 H die = ||sk — 7|

k T%H«Ir_“

1

Impulse Air absorption Wall material
function absorption



Room Acoustics Metrics

o Implemented several metrics commonly used in architectural acoustics!®]

o Computed directly from the impulse response
= Reverberationtime T
s Definition D
= Clarity Index (g,
m Center Time
s Speech Transmission Index (STI)

e Question: can we use such metrics in gradient-based optimization

problems?

o Examples:
m find room dimensions and wall materials to achieve target metric values
= find optimal placements of speakers / microphones

> ldeally: metrics are smooth, monotonic / convex w.r.t. scene parameters
o Evaluate these metrics and their gradients using our acoustics simulator over a
domain of varied scene parameters

[6] Kuttruff, “Room Acoustics”, 2016
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Optimization Experiments

o« Example optimization problems
o Find room dimensions s.t. when some number of walls have their materials
changed, the difference in reverb time is maximized
o Find the receiver location in the room that minimizes/maximizes acoustics

metrics
m E.g., placing a voice assistant optimally

NU|1|2‘3|4|5 :
To—T7] | 081 | 1.87 | 605 | 9.76 | 18.23 ’

Table 1: Maximal difference in reverberation times (in s) achieved  Figure 6: Visualization of the receiver location r obtained from
for each wall configuration. N p denotes the number of walls whose  minimizing the center times to s and s;.
properties can be dynamically adjusted.



Optimization Experiments

o Validation with real RIR data

o MeshRIR dataset!”!

s RIRs measured in a room at many source-receiver location pairs
= Ground truth room dimensions, source-receiver locations
e No precise information about room materials

o Test problem: can we obtain reasonable estimates for room geometry based on

the measured impulse responses?

s Solve by comparing RIR metrics between observation and model output
e Evaluate difference between metrics at various room parameter combinations
e Sanity check: see if a (local) minima exists at the true room geometry for some feasible
material values

[7] Koyama et. al, WASPAA, 2021



DIFFERENTIABLE FIR-TO-IIR

FILTER ESTIMATION WITH
APPLICATIONS
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PIRL S
Motivation

 Compared to FIRs, IIR filters are less computationally intensive,
require less memory, and have lower latency.

e Our primary motivation was to make HRTF based scene
rendering efficient for edge devices.

e Can also be used for efficient storage of HRTFs.

» Several other applications in DSP
e Underwater Modems
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Solution via Automatic Differentiation @@Z

ARy LN

* Given FIR filter with impulse response h, find IIR estimation h, so that:

h = min Cost(hli], hli]) hin) = 32y kio™~uln — ]
ki a,i=[0,2N —1]

* Novel Model Reformation — results in convex cost - can be used with AD

2N —1 | | | . Ly
Z k_oéq.r),—@u[n L @] in z-domain ON—1 kiz_”* reshape ZN_l Z_2i br,;() + bilz + biQZ
: L =01 _ a;z~1 =0 1+ apnz=t+ ajppz—2
(our model in time-domain)
Where x[n]

bio = ko;, bij1 = kojr1 — kojaoir1  bio = —kojii1ao;,

a;1 = —Q2; — 2441, Q2 = 2;(¥2i41




Application order 16 approximation of a 160 tap HRIR filter

1.25 ; 10’ ' - — >
1 —— original e ongmal . —— original
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vIn frequency domain, desired spectral characteristics Filter MSE Speedup | Latency | Compr.
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Peals are p | FIR 0 | 160 |
v'Very accurate approximation of the phase, making our .
. . o . 4 Bi 3.9(-1) 11.4 3 17.8
solution suitable for estimating digital filters as well. :
i 8 Bi I.1(-1) 5.7 16 94
v'3x speedup; 5x memory savings; 5x latency 6B [ 25> 536 3 13
improvement ) 1 2.9 (-2) =-00 :
32B1 | 5.9(-3) 1.42 64 2.5

(speedup based on CPU cycle benchmarks on Cortex-M7)
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Application (General Digital Filters)

* Digital FIR filters are decaying windows. To find an order N IIR
estimation, we take the central length N segment time steps of the FIR.

 Similar to HRTFs, the desired spectral characteristics are preserved.
FIR-To-IIR Estimation, Frequency Domain, Dual-Pass FIR-To-IIR Estimation, Frequency Domain, Impulse Train
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Differentiable Models of Human
Hearing

Leslie Li, Dmitry N. Zotkin, Ramani Duraiswami
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Towards a Differentiable front end
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Motivation

: model of perception + deep learning

e Physically-grounded models
o  Not complex enough to handle variability in data
o  (Over-)simplifying assumptions
m (e.g.temporal independence)
e Deep, data-driven, & end-to-end

o  Sensitive to noise and less robust in generalization
o Large, expensive and slow

How to keep the advantages of a physical model
and utilize the flexibility of deep learning?

A p—

( CNN
l l RN/ LSTM
troamasTolmaers

S -

|



The Model: Differentiable Auditory Processing

o Two-stage model [Chi et al., 2005]
o Implemented and made fully differentiable using JAX
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Current Work

o Add these to speech processing problems
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