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Personal Story

Developed/commercialized  3D Spatial audio 

rendering and personalization technology

Worked on wave propagation, vision, audition, FMM, 

parallel computing, statistics  

Missed deep learning

Exited in 2023

Since Get into learning based computational physics
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Gravity,

Potential flows

Laplace
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Quantum mechanics
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Vector
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O(N) Algorithms for classical
equations of mathematical
physics. Support AD

Application of FMM-BEM 
solvers to other domains
• Electrostatics
• Low-freq. / high-freq. 

Maxwell
• Fluid dynamics

Fast Multipole 
Methods



Two Themes for Current Research

Accelerating Deep Learning

• FMM and Parallel Computing

• O(N) Transformer -> on arXiv

Using ML and Differentiability to tackle 

problems in Physics and Engineering

• This talk 



Armin Gerami, Monte Hoover, Pranav Dulepet, Ramani Duraiswami

Perceptutal Interfaces and Reality Lab

    

Aside – a recently submitted paper on arXiv

https://arxiv.org/abs/2402.07901



• Calculating the expansion terms 

require 𝑂(𝑁𝐷𝑝+1) time and 𝑂(𝐷𝑝+1) 

memory, and calculating the output 

score 𝑂(𝑁𝐷𝑝+1) time and 𝑂(𝑁𝐷𝑝) 

memory, totaling to 𝑂(𝑁𝐷𝑝+1) time and 

𝑂(𝑁𝐷𝑝+𝐷𝑝+1) memory (𝑝 is the Taylor 

expansion length).

• The plots show time taken for a single 

forward pass on A6000. Notice how 

Vanilla Attentions (softmax) scales 

quadratically with 𝑁, whereas we scale 

linearly.

Complexity



• To measure the expressivity, we use the Long Range Arena (LRA) benchmark. As we can see, our 

speedup does not introduce a compromise in terms of expressivity.

• Our speedup is evident in LRA

Expressivity
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Deep Learning
• Incredible progress in data rich domains

• Images, Speech, Vision, Language
• Multiple such modalities

• Can capture
• Functions: Predict expected values from data - Input-output relations
• Distributions: Generate plausible outputs

• Goal: Figure out how to use deep learning in settings where 
there are 
• strong “forward” models
• data maybe sparse

• Not just use the forward solver to build datasets for learning



Deep network size



Pillars of Scientific Discovery

Experiment 
/Hypothesis 

• explain 
observations

• “Scientific 
Method”

Modeling

•  Mathematical 
Physics to 
generalize

• Equations and 
initial/boundary 
conditions

• generalizes

Data

• Learn from Data

• Deep Learning

• Generalize

• Not yet very 
explainable

Computational 
Simulation

• Scientific 
Computing and 
Numerical 
Analysis

• Further 
generalize and 
explore

• Inverse Problems

Explainable



Back Propagation, the Computational Graph
• A less appreciated component of the DL revolution

• Automatic differentiation

• Simple compositional network models used in DL can be automatically 
differentiated

• Parameters determined via optimization 
• Stochastic Gradient Descent and ADAM flavors

• Even a high school student can build a cost function computation code 
and then have their DL model trained
• Tensorflow, Pytorch

• Gives deep learning folk the feeling any problem can be fit in

• How to fit our forward models into this framework?



Relevant Research Streams
• Automatic Differentiation - classical field, but 

very active in compilers and ML; Particularly 
appreciated C. Elliott

• Differentiable Programming – several 
frameworks to build gradients automatically

• Differentiable Physics – many researchers, but 
found work of Nils Thuerey very accessible

• Neural Radiance Fields – very vibrant field; 
has taken over computer graphics; starting 
from Mildenhall et al 2020.

Neural Radiance Fields

M.Sc. Thesis, Considine, 2020

Google JAX - 2018

Julia SciML - 2017

PyTorch - 2019



NeRF
• Given: a rendering equation and snapshots of the scene from different angles

• Objective: 3D scene representation
(i.e. learned functional representation of volumetric density, point color)

• Applications: 3D geometry extraction/Novel view synthesis

• Backpropagation – differentiation through forward solver

arxiv.org/abs/2104.06405



Differentiable Physics – beyond creating data

● Gradient-based inverse problem optimization
○ Possible with a differentiable physics-based forward model of the problem

Forward 
Model

model 
params

simulated 
result

observed 
data

Reconstruction 
loss



● Gradient-based inverse problem optimization
○ Can use a trained NN to better condition the problem with learned priors from 

a dataset

Forward 
Model

model 
params

simulated 
result

observed 
data

Reconstruction 
loss

NN

Differentiable Physics – beyond creating data



NN lossdata

Physics 
constraints

Physics 
Model

● Gradient-based inverse problem optimization
○ Can use a NN to  suggest which Physics model should be used!
○ Perhaps trained via LLMs

● Many possible variations

Differentiable Physics – beyond creating data



NN lossdata

Physics 
constraints

Physics 
Model

Differentiable Physics

● Gradient-based inverse problem optimization
○ Use the data and process it with a physics-based forward model
○ Have a trained NN which learns the predictions of the physics model

● Many possible variations



Initial Projects

• Differentiable 
• Electrical Impedance Tomography

• Room Acoustics Models

• DSP Filters

• Models of Human Hearing



Example: Electrical Impedance Tomography

• Problem: Reconstruct the distribution of impedances inside an object (“image”) by 
applying current at some electrodes and taking measurements of the voltage at other 
electrodes.

• Examples: Imaging gas bubbles in a liquid, cracks in a conducting material etc.

• The electric potential Φ satisfies the Laplace equation where n is the outward normal 
to the boundary and σ is the electrical conductivity:

• In applications with regions of vanishing conductivity., the task becomes to identify the 
shapes of these regions.

• Boundary Element Method – A good choice of forward solver in these problems. 

Duraiswami et al. "Boundary element techniques for efficient 2-D and 3-D electrical impedance tomography." Chemical engineering science 52.13 (1997): 2185-2196.



Current 
guess of 

shape
BEM Solver

Compute 
voltage for 
this current 

guess

Calculate error 
between 

computed and 
measured voltage

Backpropogate with 
autograd and use 

GD to update guess
Error < tolNo

Optimized 
Input 

Parameters

Yes



Many issues with practical implementation 

• Started with trying to do our FMM BEM Solvers

• AD does not work well for complex problems
• Memory size grows very quickly for Scientific Computing

• Was finally able to solve this 

• Many operations are not obviously differentiable
• Meshing
• Boolean decisions

• Linear Algebra beyond BLAS not yet differentiable
• Matrix decompositions

• Part of our longer-term research

• Indeed, Diff Physics folks mostly solve Burger’s equation!

• And NERF folks use a stochastic model!



How do we bring numerical analysis back into solving problems



A Differentiable Image Source Model 
for Room Acoustics Optimization

Bowen Zhi, Alisha Sharma, Dmitry Zotkin, Ramani Duraiswami

Perceptual Interfaces and Reality Lab,
Computer Science & UMIACS,

University of Maryland, College Park

Work supported by ONR



Accurate room acoustics simulation with 
Helmholtz and Eikonal solvers

Potter et al., (2022)

• Helmholtz solvers:
• Physically accurate full wave simulation
• We have efficient algorithms and solvers

• Including efficient GPU versions
• Eikonal solvers: “principled raytracing”

• Unlike raytracing for graphics, acoustic raytracing lacks 
physical justification and cannot compute some important 
real physical effects, e.g. diffraction and scattering. 
Eikonal solvers address these points.



Differentiable Room Acoustics

● Differentiable image-source method
○ Implemented in PyTorch[5]

○ Input: room dimensions, wall materials, locations of source and receiver
○ Output: room impulse response 
○ For cuboid rooms, can obtain gradient w.r.t. all inputs

■ Including geometry

[5] Paszke et al., Neurips, 2019



Differentiable Room Acoustics

● Differentiable image-source method
○ Implemented in PyTorch
○ Input: room dimensions, wall materials, locations of source and receiver
○ Output: room impulse response 
○ For cuboid rooms, can obtain gradient w.r.t. all inputs

■ Including geometry
○ Simple formulation

■ Sum of delayed and attenuated impulses

Impulse 
function

Air absorptionWall material 
absorption



Room Acoustics Metrics

● Implemented several metrics commonly used in architectural acoustics[6]

○ Computed directly from the impulse response
■ Reverberation time T
■ Definition D
■ Clarity Index C80
■ Center Time
■ Speech Transmission Index (STI)

● Question: can we use such metrics in gradient-based optimization 
problems?
○ Examples:

■ find room dimensions and wall materials to achieve target metric values
■ find optimal placements of speakers / microphones

○ Ideally: metrics are smooth, monotonic / convex w.r.t. scene parameters
○ Evaluate these metrics and their gradients using our acoustics simulator over a 

domain of varied scene parameters
[6] Kuttruff, “Room Acoustics”, 2016



● Question: can we use such metrics in gradient-based optimization?



Optimization Experiments

● Example optimization problems
○ Find room dimensions s.t. when some number of walls have their materials 

changed, the difference in reverb time is maximized
○ Find the receiver location in the room that minimizes/maximizes acoustics 

metrics
■ E.g., placing a voice assistant optimally



Optimization Experiments

● Validation with real RIR data
○ MeshRIR dataset[7]

■ RIRs measured in a room at many source-receiver location pairs
■ Ground truth room dimensions, source-receiver locations

● No precise information about room materials

○ Test problem: can we obtain reasonable estimates for room geometry based on 
the measured impulse responses?
■ Solve by comparing RIR metrics between observation and model output

● Evaluate difference between metrics at various room parameter combinations
● Sanity check: see if a (local) minima exists at the true room geometry for some feasible 

material values

[7] Koyama et. al, WASPAA, 2021 



DIFFERENTIABLE FIR-TO-IIR 
FILTER ESTIMATION WITH 

APPLICATIONS

Armin Gerami, Bowen Zhi, Dmitry N. Zotkin, Ramani Duraiswami
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Motivation
• Compared to FIRs, IIR filters are less computationally intensive, 

require less memory, and have lower latency.

• Our primary motivation was to make HRTF based scene 
rendering efficient for edge devices.

• Can also be used for efficient storage of HRTFs.

• Several other applications in DSP
• Underwater Modems

    



Solution via Automatic Differentiation

• Given FIR filter with impulse response ℎ, find IIR estimation ෠ℎ, so that: 

• Novel Model Reformation – results in convex cost - can be used with AD

where

in z-domain reshape

(our model in time-domain)



Magnitude

IIR order 
16

Original 
FIR

Phase

Original 
FIR

IIR order 
16

Application order 16 approximation of a 160 tap HRIR filter 

(speedup based on CPU cycle benchmarks on Cortex-M7)

✓In time domain, the FIR onset matched almost exactly, 
while providing a good approximate of the tail
✓In frequency domain, desired spectral characteristics 
such as notches and peaks are preserved
✓Very accurate approximation of the phase, making our 
solution suitable for estimating digital filters as well.
✓3x speedup; 5x memory savings; 5x latency 
improvement



Application (General Digital Filters)

• Digital FIR filters are decaying windows. To find an order N IIR 
estimation, we take the central length N segment time steps of the FIR.

• Similar to HRTFs, the desired spectral characteristics are preserved.

    



Differentiable Models of Human 
Hearing

Leslie Li, Dmitry N. Zotkin, Ramani Duraiswami

{rlli, wdz, ramanid}@umd.edu

    



Towards a Differentiable front end

Cochlear (ear) Cortical (brain)

Auditory 
Spectrogram

Audio STRFs

Schnupp, J., Nelken, I., & King, A. (2011). Auditory neuroscience: Making sense of sound. MIT press.
Elhilali, M. (2004). Neural basis and computational strategies for auditory processing. University of Maryland, College Park.



Motivation: model of perception + deep learning

● Physically-grounded models
○ Not complex enough to handle variability in data

○ (Over-)simplifying assumptions 

■ (e.g. temporal independence)

● Deep, data-driven, & end-to-end
○ Sensitive to noise and less robust in generalization

○ Large, expensive and slow

How to keep the advantages of a physical model 
and utilize the flexibility of deep learning? 



The Model: Differentiable Auditory Processing

Step 2: Subcortical & Cortical

STRFs

Step 1: Cochlear & Auditory Nerve

● Two-stage model [Chi et al., 2005]
● Implemented and made fully differentiable using JAX

Audio



Current Work

● Add these to speech processing problems
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