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Inverse Problems
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Well-Known Inverse Problems:
Locate Earthquake Source, Image the Black Hole, X-ray/CT/Ultrasound



General “Inverse Problems”

Model (m)

X (PDE)  mmp )

(NNets)

Inverse data matching problems aim at finding m such that the predicted
outputs (X, F(m)) match given measured data (X, Y).



Calderon’s Problem (Electrical Impedance Tomography, EIT)

V-(a(x)Vu) =0, xe€Q
ux) =1, xeoQ

: U&\ Given “Dirichlet-to-Neumann” map
Aa - HYV2(8Q) — H2(8Q)
. oo Na : P —>aVuy -n,
: B preTes the goal is to find
i a(x), xeQ.
Fon 000000

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method
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for impedance computed tomography. CPAM.
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Waveform Inversion (FWI)

m(x)ylgtx;o — Au(x,t) = s(x,t)

Zero i.c. in half-space
Neumann b.c. on 9Q
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FETRE

v ) ) . ' ‘
e i m(x) = ——, c(x) is the wave velocit
R NG R elocity
i _;‘{E Given u(xr,yr,z = 0,t) the goal is to find
i
nﬁ?ﬂll”' m(x), xe€Q.

Tarantola, A. (2005). Inverse problem theory and methods for model
parameter estimation. SIAM.
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Helmholtz Equation Based Inversion

AU+ w?m(x)u = s(x,w)

Neumann b.c. on 992

m(x) = ! c(x) is the wave velocity

c(x)*’

Given u(x,yr,z = O; w) the goal is to find

m(x), xe€Q.

Colton, David L., Rainer Kress. Inverse acoustic and electromagnetic
scattering theory. Vol. 93. Berlin: Springer, 1998.

— Wikipedia



Modeling the Dynamics

A general parameterized dynamical

system may take the form
“Chen” System [Chen-Ueta, 1999]

X
vy | =vixy,zo,0p,B) = v(x0)
Z 0

where v =~ v(-,6) can be

+ polynomials,

« basis functions,

« neural networks, and so on,

Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. Optimal
where 0 corresponds to
transport for parameter identification of chaotic

dynamics via invariant measures. SIADS. + expansion coefficients,

+ neural network weights, etc.



The Forward Model F(m)

F is given; we just find m (e.g., PDEs).

« Pro: We know the best (exact) forward problem!

Con: The forward and inverse problems are so nonlinear!

OR
F is not known; we are free to choose (e.g., XXX-net).

* Pro: The freedom to modify it to a “better” map

+ Over-Parametrization;
« Model Extension;
+ Model Reduction.

« Con: Trial and error to build the model



How to Solve F(m) =g

W Linear Inverse Problem, i.e, Am =g
(often combined with numerical linear algebra)
+ Direct Method
* lterative Method
+ Optimization-Based Method (e.g., least-squares min)



How to Solve F(m) =g

W Linear Inverse Problem, i.e, Am =g
(often combined with numerical linear algebra)
+ Direct Method
* lterative Method
+ Optimization-Based Method (e.g., least-squares min)

B Nonlinear Inverse Problem, F(m) = g

» Direct Method (challenging to construct) (in today’s talk)
+ Iterative Method (e.g., nonlinear GMRES)
+ Optimization Method



Learn a Direct Inverse Map




Example: Calderon’s Problem

V-(a(x)Vu) =0, xe€Q
uix) =19, xeodQ

Given Dirichlet-to-Neumann map
Ag : HV2(09) — H/2(0Q)

Aq : v — aVuy - n,

the goal is to find

a(x), xeQ.

In suitable settings, it is provable
that there exists an inverse
problem with (log-) stability.
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The Data Acquisition

Recall that the data is an operator on the continuous level
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The Training Data Acquisition

We provide (a(’), {\Uéi)}g> as the training data fori=1,...,n
number of different parameter samples with a() ~ .

(WY ~ v = Agofipg,  1g fixed.
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Push-Forward Map

Consider 7 and x as two probability measures on the domain
X and Y, respectively. We say T is a mass-preserving

push-forward map (i.e., u = Ttr ) if

puA) = (T7'(A))

)

where A C Y is an arbitrary Borel measurable set and

T~'(A) C X denotes its preimage.

13



Push-Forward Map

Consider 7 and x as two probability measures on the domain
X and Y, respectively. We say T is a mass-preserving
push-forward map (i.e., u = Ttr ) if

uA) == (T7'(A)) |,

where A C Y is an arbitrary Borel measurable set and
T~'(A) C X denotes its preimage.

If dm = p(x)dx, du = g(x)dx, we further have

9

P(x)dx = g (T(x)) [VxT(x)dx

the well-known change of variable formula.
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The Neural Network Architecture — DeepONet
@—> Branch Net —»

@—> Trunk Net —»

NN,: DeepONet [Lu-)in-Karniadakis,2019]
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The Neural Network Architecture — Fourier Neutral Operator

w

NN,: Fourier Neutral Operator (FNO) [Li et al., 2020]
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The Neural Network Architecture

DeepONet FNO

The proposed Neural Inverse Operator (NIO)

An Intuition:
DeepONet: {W,} — {f,} (analogy: {aVu,, - n} on 9 to {u,} on Q)
FNO: {f;} — a (analogy: {u,} on Qto aon Q)
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The Neural Network Architecture
—

DeepONet (NN,) FNO (NN,)

NIO (Aatjg) = NN, ( NNt (Aatiig) > —a.
~—

Hw

samples {f,}
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The Neural Network Architecture

DeepONet (NN,) FNO (NN,)

——
My
samples {f,}

One concern: NN does not know {V¥,} are samples of uy and
similarly {f,} are samples of an underlying distribution.
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The Neural Network Architecture

DeepONet (NN,) FNO (NN,)

NIO (Aatjg) = NN, ( NNt (Aatiig) > —a.
~—

Hw

samples {f,}
One concern: NN does not know {V¥,} are samples of uy and
similarly {f,} are samples of an underlying distribution.

We want: (1) permutation invariant; (2) different a can have different
L; (3) testing data can have a different L 17



The Training Scheme — Bagging — “Randomized Batching”

Training Input Iteration 1 Iteration 2 Iteration n Iteration N

iy . @& . ‘ v v, Y v, ‘
Wy . W -p Y, Y v, . Yy v, Y ¥,
v, . v, v, A . v, v,

T
A
>r‘—> R »@—>L1+L2—>---—> Lr—> Q

OO0 EL9 " -

?—P Trunk Net —1
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The Training Scheme — Bagging — “Randomized Batching”

Training Input Iteration 1 Iteration 2 Iteration n Iteration N

iy . @& .‘ v v, Y v, ‘
Wy . W -p Y, Y v, . Yy v, Y ¥,

T
A
>r‘—> R »@—>L1+L2—>---—> Lr—> Q

?—P Trunk Net —1 I

Rich theoretical analysis in “Bagging” from statistical learning.

OO0 EL9 " -
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Numerical Results




EIT Examples

S\ [ A
A f\L
ou
g 3v|3D a

Given DtN map

Na - HV2(09) — H2(09)
Na : P —aVuy -n,
the goal is to find a(x), x € Q.
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EIT Examples

WWWWWWWW LS5
e -

Given DtN map

Na : HYV2(8Q) — HV2(8Q)
N Y —=aVuy -n,
the goal is to find a(x), x € Q.
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EIT Examples

R
2l
ov 5p
x)Vu) =0, x€Q
P, X € 0Q

Given DtN map

Ng - HV2(0Q) — H/2(6Q)
Aq : P — GVUU) -n,
the goal is to find a(x), x € Q.
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RTE Inversion Examples

v

=

I I C

0.0 0.2 0.4 0.6 0.8 1.0
X

T u|r+ a

Given the Albedo operator
V- VU(z,v) + oq(2)u(z,v)
Ag : LY(T_) s LY(T
:la(Z)Q[u],zeD a:L'(MT-) = L(Ty)
€
u(z,v) =o(z,v),zel_ Na:ul =¢—ul
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Wave Inversion Results

Given the Source-to-Receiver
(StR) operator,
us(t,z) + a(z)’Au =s,
.2 2\ .
(z,t) € D x [0,T], Aa : L*([0, T] x D) = L*([0, T]; XR),

AG:SHU‘[O,T]XR’ -



Wave Inversion Results

Given the Source-to-Receiver
(StR) operator,
us(t,z) + a(z)’Au =s,
.2 2 .
(z,t) € D x [0, T], Aa : L*([0,T] x D) — L*([0, T]; Xg).

AG:SHU‘[O,T]XR’ o



Testing Performance Comparison

DONet FCNN NIO
Ll | L] Ll | L% ] L' L?]

EIT Trigonometric 197% 2.36% 1.49% 1.82% 0.85% 1.05%
EIT Heart&Lungs 0.95% 3.69% 027% 1.62% 0.18% 1.16%
EIT Inclusion Detection 383% 741% 253% 7.55% 1.07% 2.94%
Optical Imaging 235% 435% 146% 3.71% 11% 2.9%

Seismic Imaging - CurveVel-A 3.98% 5.86% 2.65% 5.05% 2.71% 4.71%
Seismic Imaging - Style - A 382% 517% 3.12% 4.63% 3.04% 4.36%
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Compare with PDE-Constrained Optimization

PDE Constrained Optimization

The ill-posed Calderon Problem (inverse Darcy flow)

V-(a(x)Vu) =0, xe€Q
uix) =1, xeoQ

L
min ) dist(Fj(a),d®®) s.t. PDE constraints
acA(D) P

Difficulty in PDE-Constrained optimization: high wavenumber (i.e., edges) 2e



Compare with PDE-Constrained Optimization

The full waveform inversion (FWI) problem
uee(t,2) + @2(2)Au = s,
(z,t) € D x [0,T],

min Zdlst a),d®®) s.t. PDE constraints
acA( D)

27
D|fﬁculty in PDE-Constrained optimization: local minima



Conclusions




Summary and Future Directions

Summary

- We consider a large class of PDE-based inverse problems that are
“solvable” only when providing a data operator (e.g., DtN, Albedo).
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Summary and Future Directions

Summary

- We consider a large class of PDE-based inverse problems that are
“solvable” only when providing a data operator (e.g., DtN, Albedo).

+ Learn mappings from operators to functions to solve inverse problem.

- Motivated by the inverse-problem nature, we proposed a novel
architecture, termed Neural Inverse Operator (NI0), based on a
composition of DeepONet and FNO.

- Random batching to inform FNO the input is an empirical distribution.

Future Directions
1. Conduct theoretical analysis on the generalization error
2. How do different ways of representing A, affect convergence?

3. How does the PDE inverse problem stability improve using statistical
learning-type of algorithms?
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