
AMSC 660 / CMSC 660
Fall 2015

Final Exam. Due Friday, Dec. 18, 10 AM

1. Consider 16 particles in 2D interacting according to the pair potential

Vhoney(r) =
5

r12
− 6.50

r10
+ 18.19e−2.21r − 0.4e−40(r−1.755)

2
. (1)

This potential was specially designed to favor the self-assembly of the honeycomb
lattice [1]. The function to be minimized is the total potential of interaction of 16
particles

f(x1, y1, x2, y2, . . . , x16, y16) =

15∑
i=1

16∑
j=i+1

Vhoney(rij),

where rij =
√

(xi − xj)2 + (yi − yj)2. Pick a suitable optimization method and set
up a reasonable initial configuration to find the potential minimum shown in figure
below.

Submit your code via ELMS.

Hint 1: A matlab routine [f, g] = Honey(z) that computes the potential f(z)
and its gradient g(z) is provided. z is a column vector with 32 entries, the first
16 entries are x1, . . . , x16, the last 16 entries are y1, . . . , y16. A matlab routine
draw_configuration(z) is also provided.

Hint 2: In order to set up a good initial configuration, plot the graph of Vhoney(r) ver-
sus r and find its minima. (To find the minima, you can use matlab’s fminsearch).
The radii of the circles in the figure above are equal to one half of the first local
minimizer r1 ≈ 1.
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Table 1: Hammer-Hollingsworth, IRK, order 4

2. Integrate the canonical equations for the simple harmonic oscillator

dp

dt
= −q, dq

dt
= p, p(0) = 1, q(0) = 0, (2)

for the time interval 0 ≤ t ≤ Tmax = 32π using the Hammer-Hollingsworth method
with the Butcher array given in Table 1. Do this using time steps h = h02

−k, for
k = 1, 2, . . . , 10, h0 = π/2. For each time step, compare your numerical solution at
Tmax with the exact one (find it analytically). Plot the graph of the error at Tmax

versus h in the log-log scale. Estimate the constant C and the power ρ in the error
formula

Error ≈ Chρ.

Submit your code via ELMS.

Hint: You can use matlab’s command polyfit.

3. (a) Read Chorin & Hald [2] about the Ising model and about the Markov chain
Monte Carlo (the Metropolis algorithm): 2nd edition, pages 119 – 123, or 3rd
edition, pages 150 – 152 and 157 – 161.

(b) Write a matlab code to compute the mean magnetization m in the Ising model
in 2 dimensions by the Metropolis algorithm (the Markov chain Monte Carlo
algorithm presented in [2]), on a 30 × 30 lattice as a function of β. Make
the boundary conditions periodic, i.e., the nearest neighbors of site (i, j) where
0 ≤ i, j ≤ 29 are (i ± 1 mod 30, j ± 1 mod 30) (see the matlab help for the
command mod). Note that the analytic expression for the mean magnetization
is

m(β) =

{(
1 − [sinh(2β)]−4

)1/8
, β > 1/Tc = 0.4408,

0, β < 1/Tc = 0.4408.
(3)

(c) Calculate m for the set of values of β = 0.2:0.01:1. For each Monte Carlo
run, make your program to plot the running mean of the magnetization, the



running variance of the magnetization, and the running variance of the mean
magnetization:

m̄k =
1

k

k∑
i=1

mi, [Var(m)]k =
1

k − 1

k∑
i=1

(mi − m̄i)
2,

[Var(m̄)]k =
1

k − 1

k∑
i=1

m̄i −
1

i

i∑
j=1

m̄j

2

.

Stop iterations as the running variance of the mean magnetization becomes less
than some reasonable threshold. Plot 1: Plot the graph of the computed mean
magnetization as a function of β and superimpose it with the graph of m(β)
given by Eq. (3). Plot the graph of the number of Monte Carlo iterations
necessary to reach your stopping criterion vs β. For the case if there is some
value of β for which convergence is not achieved in a reasonable time, restrict
the maximal number of Monte Carlo steps by some Nmax. If for some values of
β convergence is not achieved in Nmax steps, report about it in the comments to
your program.

Submit your code via ELMS. Also submit a single pdf file with Plot 1.
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