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1. Basic concepts of probability

1.1. Definitions.

• A sample space Ω is the set of all possible outcomes.
• An event A is a subset of Ω.
• A σ-algebra B is a subset of the set of all subsets of Ω satisfying the following

axioms
(1) ∅ ∈ B and Ω ∈ B;
(2) If B ∈ B then Bc ∈ B (Bc is the complement of B in Ω, i.e., Bc ≡ Ω\B).
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(3) If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋃
i

Ai ⊂ B.

Corollary: If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋂
i

Ai ⊂ B.

Indeed, ⋂
i

Ai =

(⋃
i

Aci

)c
.

Example 1 Suppose you a tossing a die. For a single throw, the sample
space is Ω = {1, 2, 3, 4, 5, 6}. If you are interested in particular number
on the top, the natural choice of the σ-algebra is the set of all subsets of
Ω. Then |B| = 26 = 64. If you are interested only in where the outcome
is odd or even, then a reasonable choice of σ-algebra is

B = {∅, {1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}}.
If you are interested only whether there is an outcome or not, you can
choose the coarsest σ-algebra

B = {∅, {1, 2, 3, 4, 5, 6}}.
• A probability measure P is a function P : B → [0,+∞] such that

(1) P (Ω) = 1;
(2) 0 ≤ P (A) ≤ 1 for all A ∈ B.
(3) Countable additivity: If A = {A1, . . . , An, . . .} is a finite or countable col-

lection in B such that Ai ∩Aj = ∅ for any i, j, then

P

(⋃
i

Ai

)
=
∑
i

P (Ai).

Corollary: P (∅) = 0. Indeed,

1 = P (Ω) = P (Ω ∪ ∅) = P (Ω) + P (∅) = 1 + P (∅).
Hence, P (∅) = 0.
• A probability space is the triple (Ω,B, P ).
• A random variable η is a B-measurable function η : Ω→ R.

A function if called B-measurable if the preimage of any measurable subset of R
is in B. It is proven in analysis that it is suffices to check that

{ω ∈ Ω | η(ω) ≤ x} ∈ B for any x ∈ R.

• A probability distribution function of a random variable η is defined by

Fη(x) = P ({ω ∈ Ω | η(ω) ≤ x}) = P (η ≤ x).
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Theorem 1. If Fη is a probability distribution function then
(1) F is nondecreasing, i.e., x < y =⇒ F (x) ≤ F (y).
(2) limx→−∞F (x) = 0, limx→∞F (x) = 1.
(3) F (x) is continuous from the right for every x ∈ R, i.e.,

lim
y→x+0

F (y) = F (x).

Example 2 Suppose you a tossing a die. Consider the probability
space

(1) (Ω = {1, 2, 3, 4, 5, 6},B = 2Ω, P (ω) = 1
6),

where 2Ω is the set of all subsets of Ω, and ω ∈ Ω = {1, 2, 3, 4, 5, 6}.
Consider the random variable η(ω) = ω. The probability distribution
function is given by

Fη(x) =


0, x < 1,

j/6, j ≤ x < j + 1, j = 1, 2, 3, 4, 5

1, x ≥ 6.

• Suppose F ′η(x) exists. Then fη(x) ≡ F ′η(x) is called the probability density
function (pdf) of the random variable η, and

P (x < η ≤ x+ dx) = Fη(x+ dx)− Fη(x) = fη(x)dx+ o(dx).

Example 3 Gaussian density

f(x) =
1√

2πσ2
e−

(x−m)2

2σ2 ,

where m and σ are constants. m is the mean, while σ is the standard
deviation.
Example 4

f(x) =

{
e−x, x ≥ 0,

0, x < 0.
.

1.2. Expected values and moments.

Definition 1. Let (Ω,B, P ) be a probability space, and η be a random variable. Then the
expected value, or mean, of the random variable η is defined as

(2) E[η] =

∫
Ω
η(ω)dP.

If Ω is a discrete set,

E[η] =
∑
i

η(ωi)P (ωi).
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Example 5 Suppose you a tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The expected
value of η is

E[η] =

6∑
j=1

j 1
6 = 3.5

If a derivative of the probability distribution function Fη exists, then

E[η] =

∫ ∞
−∞

xf(x)dx.

The integral in Eq. (2) can be rewritten using the probability distribution function Fη(x)
which we denote by F (x) for brevity:

E[η] =

∫
R
xP (x < η ≤ x+ dx) =

∫ ∞
−∞

xdF (x).

If g is a continuous function defined on the range of the random variable η (on η(Ω)),
then the expected value of this function is

E[g(η)] =

∫ ∞
−∞

g(x)dF (x).

Moments: Let us take g(x) = xn.

E[ηn] =

∫ ∞
−∞

xndF (x).

Central moments: Let us take g(x) = (x− E[η])n.

E[(η − E[η])n] =

∫ ∞
−∞

(x− E[η])ndF (x).

Variance = 2nd central moment:

Var(η) = E[(η − E[η])2) =

∫ ∞
−∞

(x− E[η])2dF (x).

Example 6 Suppose you a tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The variance of η
is

Var(η) =
1

6

6∑
j=1

(j − 3.5)2 =
35

12
= 2.91(6).

The standard deviation:

σ(η) =
√

Var(η).
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1.3. Independence, joint distributions, covariance.

• Two events A,B ∈ B are independent if

P (A ∩B) = P (A)P (B).

• Two random variables η1 and η2 are independent if the events

(3) {ω ∈ Ω | η1(ω) ≤ x} and {ω ∈ Ω | η2(ω) ≤ y}

are independent for all x, y ∈ R.

Example 7 Suppose you are tossing a die twice. Consider the proba-
bility space

(4) (Ω = {1, 2, 3, 4, 5, 6}2,B = 2Ω2
, P ({ω1, ω2}) = 1/36), 1 ≤ ω1, ω2 ≤ 6.

Let η1 and η2 be random variables equal to the outcomes of the first and

Table 1. Two throws of a die. Values of the random variables ξ(ω1, ω2) =
ω1 + ω2 (left) and β(ω1, ω2) = ω1 − ω2 (right).

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

1 2 3 4 5 6

1 0 1 2 3 4 5
2 -1 0 1 2 3 4
3 -2 -1 0 1 2 3
4 -3 -2 -1 0 1 2
5 -4 -3 -2 -1 0 1
6 -5 -4 -3 -2 -1 0

the second throws respectively. These random variables are independent.
Now consider the random variables η(ω1, ω2) = ω1 and ξ(ω1, ω2) = ω1+ω2

(see Table 1, left). We can show that η and ξ are dependent by taking
e.g., x = 1 and y = 2 in Eq. (3):

P (η ≤ 1 & ξ ≤ 2) = 1
36 6= P (η ≤ 1)P (ξ ≤ 2) = 1

6 ·
1
36 = 1

216 .

Finally, we consider the random variables ξ(ω1, ω2) = ω1+ω2 and β(ω1, ω2) =
ω1 − ω2 (see Table 1, right). We can show that they are dependent by
taking e.g., x = 2 and y = −1 in Eq. (3):

P (ξ ≤ 2 & β ≤ −1) = 0 6= P (ξ ≤ 2)P (β ≤ −1) = 1
36 ·

15
36 = 5

432 .

• The joint distribution function of two random variables η1 and η2 is given by

Fη1η2(x, y) = P ({ω ∈ Ω | η1(ω) ≤ x, η2(ω) ≤ y}) = P (η1(ω) ≤ x, η2(ω) ≤ y).
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• If the second mixed derivative of Fη1η2 exists, it is called the joint probability
density of η1 and η2 and denoted by

fη1η2 :=
∂Fη1η2(x, y)

∂x∂y
.

In this case,

Fη1, η2(x, y) =

∫ x

−∞

∫ y

−∞
fη1η2(x, y)dxdy.

Exercise Show that two random variables are independent if and only if

Fη1η2(x, y) = Fη1(x)Fη2(y).

Furthermore, if the joint pdf fη1η2(x, y) exists, then

fη1η2(x, y) = fη1(x)fη2(y).

• Given the joint pdf fη1η2 , one can obtain fη1(x) by

fη1(x) =

∫ ∞
−∞

fη1η2(x, y)dx.

In this equation, fη1 is called a marginal of fη1η2 , and the variable η2 is said to
have been integrated out.
• Properties of expected value and variance It follows from the definition, that

the expected value is a linear functional:

(5) E[aη1 + bη2] = aE[η1] + bE[η2].

•

(6) Var(aη) = a2Var(η).

• If η1and η2 are independent, then

(7) Var(η1 + η2) = Var(η1) + Var(η2).

Example 8 Suppose you are tossing a die twice. Consider the proba-
bility space and random variables introduced in Example 7. Then

E[ξ] = E[η1 + η2] = E[η1] + E[η2] = 7.

E[β] = E[η1 − η2] = E[η1] + E[−η2] = 0.

V ar[ξ] = V ar[η1 + η2] = V ar[η1] + V ar[η2] = 35
6 = 5.8(3).

V ar[β] = V ar[η1 − η2] = V ar[η1] + V ar[−η2] = V ar[η1] + V ar[η2] = 35
6 = 5.8(3).
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Example 9 Consider the Bernoulli random variable

(8) η =

{
1, P (1) = p,

0, P (0) = 1− p.

Its expected value and variance are

E[η] = 1 · p+ 0 · (1− p) = p,

Var(η) = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).

Now consider the sum of n independent copies of η:

ξ :=
n∑
i=1

ηi.

Using Eq. (5) we calculate E[ξ]:

E[ξ] =

n∑
ı=1

E[ηi] = np.

Since ηi, 1 ≤ i ≤ n, are independent, we can calculate Var(ξ) using Eq.
(7):

Var(ξ) =
n∑
i=1

Var(ηi) = np(1− p).

Finally, consider the average of n independent copies of η:

ζ :=
1

n

n∑
i=1

η ≡ ξ

n
.

Using Eqs. (5) and (6), we find

E[ζ] = p,

Var(ζ) = Var

(
ξ

n

)
=

1

n2
Var(ξ) =

p(1− p)
n

.

• The covariance of two random variables η1 and η2 is defined by

Cov(η1, η2) = E[(η1 − E[η1])(η2 − E[η2])].

Remark If η1 and η2 are independent, then Cov(η1, η2) = 0. If Cov(η1, η2) = 0
then η1 and η2 are uncorrelated. Note that uncorrelated random variables are not
necessarily independent.
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Example 10 Suppose you are tossing a die twice. Consider the prob-
ability space and random variables introduced in Example 7. As we have
established in Example 7, ξ and β are dependent. However, they are
uncorrelated. Indeed,

Cov(ξ, β) =
∑

1≤ω1≤6, 1≤ω2≤6

(ω1 + ω2 − 7)(ω1 − ω2)P ({ω1, ω2})

=
1

36

( ∑
ω1<ω2

(ω1 + ω2 − 7)(ω1 − ω2) +
∑
ω1>ω2

(ω1 + ω2 − 7)(ω1 − ω2)

)
= 0.

Example 11 A vector-valued random variable η = [η1, . . . , ηn] is jointly
Gaussian if

P (x1 < η1 ≤ x1 + dx1, . . . , xn < ηn ≤ xn + dxn) =
1

Z
e−

1
2

(x−m)TA−1(x−m)dx+ o(dx),

where x = [x1, . . . , xn]T , m = [m1, . . . ,mn]T , dx = dx1 . . . dxn, and A is
a symmetric positive definite matrix. The normalization constant Z is
given by

Z = (2π)n/2|A|1/2, where |A| = detA.

In the case of jointly Gaussian random variables, the covariance matrix
C whose entries are

Cij = E[(ηi − E[ηi])(ηj − E[ηj ])]

is equal to A. Two jointly Gaussian random variables are independent if
and only if they are uncorrelated.

1.4. Chebyshev inequality.

Theorem 2. Let η be a random variable. Suppose g(x) is a nonnegative, nondecreasing
function (i.e., g(x) ≥ 0, g(a) ≤ g(b) whenever a < b). Then for any a ∈ R

(9) P (η ≥ a) ≤ E[g(η)]

g(a)
.

Proof.

E[g(η)] =

∫ ∞
−∞

g(x)dF (x)

≥
∫ ∞
a

g(x)dF (x) ≥ g(a)

∫ ∞
a

dF (x) = g(a)P (η ≥ a).

�

Given a random variable η we define a random variable

ξ := |η − E[η]|.
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Define

g(x) =

{
x2, x ≥ 0,

0, x < 0.
.

Plugging this into Eq. (9) we obtain

P (|η − E[η]| ≥ a) ≤ Var(η)

a2
.

Example 12 Suppose you are tossing a die twice. Consider the probabil-
ity space and random variables introduced in Example 7. We will compare
the exact probabilities with their Chebyshev estimates.

P (|ξ − 7| ≥ 1) = P (ξ 6= 7) = 1− 6
36 = 5

6 = 0.8(3),
Var(ξ)

1
= 35

6 = 5.8(3);

P (|ξ − 7| ≥ 2) = P (ξ ≤ 5 or ξ ≥ 9) = 20
36 = 5

9 = 0.(5),
Var(ξ)

4
= 35

24 = 1.458(3);

P (|ξ − 7| ≥ 3) = P (ξ ≤ 4 or ξ ≥ 10) = 12
36 = 1

3 = 0.(3),
Var(ξ)

9
= 35

54 = 0.6(481);

P (|ξ − 7| ≥ 4) = P (ξ ∈ {2, 3, 11, 12}) = 6
36 = 1

6 = 0.1(6),
Var(ξ)

16
= 35

96 = 0.36458(3);

P (|ξ − 7| ≥ 5) = P (ξ ∈ {2, 12}) = 2
36 = 1

18 = 0.0(5),
Var(ξ)

25
= 35

150 = 0.2(3);

Choosing a = kσ we get

P (|η − E[η]| ≥ kσ) ≤ 1

k2
.

This means that for any random variable η defined on any probability space we have that
the probability that η deviates from its expected value by at least k standard deviations
does not exceed 1/k2.

Note that the power of Chebyshev’s inequality is its weakness at the same time. It is
universal as it is valid for any random variable defined on any probability space. At the
same time, due to its generality, it typically gives loose bounds. These bounds cannot be
improved in principle, because they are exact for the random variable

η =


1, P = 1

2k2
,

0, P = 1− 1
k2
,

−1, P = 1
2k2
.

.

It is easy to check that E[η] = 0, Var(η) = 1
k2

, and

P (|η| ≥ 1) = 1
k2
.

Chebyshev’s inequality gives the precise upper bound:

P (|η| ≥ 1) ≤ Var(η)

12
=

1

k2
.
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1.5. Types of convergence of random variables. Suppose we have a sequence of ran-
dom variables {η1, η2, . . .}. In probability theory, there exists several different notions of
convergence of a sequence of random variables {η1, η2, . . .} to some limit random variable
η.

• {η1, η2, . . .} converges in distribution or converges weakly, or converges in
law to η if

(10) lim
n→∞

Fn(x) = F (x) for every x where F (x) is continuous,

where Fn and F are the probability distribution functions of ηn and η respectively.

Remark Convergence of pdfs fn(x) implies convergence of Fn(x). The converse is
not true in general. For example, consider Fn(x) = x − 1

2πn sin(2πnx), x ∈ (0, 1).
The corresponding pdf is fn(x) = 1− cos(2πnx), x ∈ (0, 1). Fns converge to x, i.e.,
to the uniform distribution, while fns do not converge at all.

Remark In the discrete case, the convergence of probability distributions f(k) :=
P (η = k) implies the convergence of the probability distribution functions.

Example 13 Consider the sum of n independent copies of the Bernoulli
random variable as in Example 9:

(11) ξ =

n∑
i=1

ηi, where ηi =

{
1, P (1) = p,

0, P (0) = 1− p.

Its probability distribution is the binomial distribution given by

(12) f(k;n, p) ≡ P (ξ = k) =

(
n
k

)
pk(1− p)n−k,

where

(
n
k

)
is the number of k-combinations of the set of n elements:

(
n
k

)
=

n!

k!(n− k)!
.

Now we let n→∞ and p→ 0 in such a manner that the product np (i.e.,
the expected value of ξ) remains constant. We introduce the parameter

λ := np.

Consider the sequence of random variables ξn where ξn is the sum of n
independent copies of Bernoulli random variable with p = λ/n, i.e,

(13) ξn =
n∑

ı=1

η
(n)
i , where η

(n)
i =

{
1, P (1) = λ/n,

0, P (0) = 1− λ/n.
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Plugging in p = λ/n in the results of Example 9 we find the expected
value and the variance:

E[ξn] = n
λ

n
= λ.

Var(ξn) = n
λ

n

(
1− λ

n

)
= λ

(
1− λ

n

)
.

We will show that the sequence ξn converges to the Poisson random vari-
able with parameter λ in distribution. Consider the limit

lim
n→∞

f(k;n, λ/n) = lim
n→∞

n(n− 1) . . . (n− k + 1)

k!

λk

nk

(
1− λ

n

)n−k
=

λk

k!
lim
n→∞

n(n− 1) . . . (n− k + 1)

nk
lim
n→∞

(
1− λ

n

)n
lim
n→∞

(
1− λ

n

)−k
The first limit in the equation above is 1 as n(n − 1) . . . (n − k + 1) =
nk + O(nk−1). The second limit can be calculated using the well-known
fact that

lim
n→∞

(
1 +

1

n

)n
= e.

Hence

lim
n→∞

(
1− λ

n

)n
= e−λ.

The third limit is 1. Therefore,

lim
n→∞

n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!
e−λ,

which is the Poisson distribution with parameter λ.
• {η1, η2, . . .} converges in probability to η if for any ε > 0

(14) lim
n→∞

P (|ηn − η| ≥ ε) = 0

Remark Convergence in probability implies convergence in distribution.

Proof. We will prove this fact for the case of scalar random variables. We have
limn→∞ P (|ηn − η| ≥ ε) = 0, we need to prove limn→∞ P (ηn ≤ x) = P (η ≤ x) for
every x where Fη is continuous. First we show an auxiliary fact that for any two
random variables ξ and ζ, x ∈ R and ε > 0

(15) P (ξ ≤ a) ≤ P (ζ ≤ a+ ε) + P (|ξ − ζ| > ε).



12

Indeed,

P (ξ ≤ a) = P (ξ ≤ x & ζ ≤ a+ ε) + P (ξ ≤ a & ζ > a+ ε)

≤ P (ζ ≤ a+ ε) + P (ξ − ζ ≤ a− ξ & a− ζ < −ε)
≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε)
≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε) + P (ζ − ξ > ε)

= P (ζ ≤ a+ ε) + P (|ζ − ξ| < ε).

Applying Eq. (15) to ξ = ηn and ζ = η with a = x and a = x− ε, we get

P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε)

P (η ≤ x− ε) ≤ P (ηn ≤ x) + P (|ηn − η| > ε).

P (η ≤ x− ε)− P (|ηn − η| > ε) ≤ P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε).

Taking the limit n→∞ and taking into account that limi→∞ P (|ηn − η| ≥ ε) = 0,
we get

Fη(x− ε) ≤ lim
n→∞

Fηn(x) ≤ Fη(x+ ε).

If x is a point of continuity of Fη,

lim
ε→0

Fη(x− ε) = lim
ε→0

Fη(x+ ε) = Fη(x).

Therefore, taking the limit ε→ 0 we obtain the weak convergence:

lim
n→∞

Fηn(x) = Fη(x)

for any x where Fη(x) is continuous. �

Remark In the opposite direction, convergence in distribution to a constant ran-
dom variable implies convergence in probability.

• {η1, η2, . . .} converges almost surely or almost everywhere or with proba-
bility 1 or strongly to η if

(16) P
(

lim
n→∞

ηn = η
)

= 1.

Remark Convergence almost surely implies convergence in probability (by Fatou’s
lemma) and in distribution.

• To summarize,

(17) ηi → η almost surely ⇒ ηi → η in probability ⇒ ηi → η in distribution
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1.6. Laws of Large Numbers and the Central Limit Theorem.

• Let {η1, η2, . . .} be a sequence of random variables with finite expected values {m1 =
E[η1],m2 = E[η2], . . .}. Define

ξn =
1

n

n∑
i=1

ηi, ξ̄n =
1

n

n∑
i=1

mi.

Definition 2. (1) The sequence of random variables ηn satisfies the Law of Large
Numbers if ξn − ξ̄n converges to zero in probability, i.e., for any ε > 0

lim
n→∞

P (|ξn − ξ̄n| > ε) = 0.

(2) The sequence of random variables ηn satisfies the Strong Law of Large Numbers
if ξn − ξ̄n converges to zero almost surely, i.e., for almost all ω ∈ Ω

lim
n→∞

ξn − ξ̄n = 0.

• If the random variables ηn are independent and if Var(ηi) ≤ V <∞, then the Law
of Large Numbers holds by the Chebyshev Inequality (9):

P (|ξn − ξ̄n| > ε) = P

(∣∣∣∣∣
n∑
i=1

ηi −
n∑
i=1

mi

∣∣∣∣∣ > nε

)

≤ Var(η1 + . . .+ ηn)

ε2n2
≤ V

ε2n
→ 0 as n→∞.

•

Theorem 3. (Khinchin) A sequence of independent identically distributed random
variables {ηi} with E[ηi] = m and E[|ηi|] <∞ satisfies the Law of Large Numbers.
•

Theorem 4. (Kolmogorov) A sequence of independent identically distributed ran-
dom variables with finite expected value and variance satisfies the Strong Law of
Large Numbers.
•

Theorem 5. (The central limit theorem) Let {η1, η2, . . .} be a sequence of
independent identically distributed (i.i.d.) random variables with m = E[ηi] and
0 < σ2 = Var(ηi) <∞, then the distributions

(18)
(
∑n

i=1 ηi)− nm
σ
√
n

−→ N(0, 1) in distribution,

i.e., converges weakly to the standard normal distribution N(0, 1) (i.e., the Gaussian
distribution with mean 0 and variance 1) as n→∞.

A proof via Fourier transform can be found in [1]. Another proof making use of
characteristic functions can be found in [2].
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Remark Eq. (18) can be recasted as

(19)
1

n

n∑
i=1

ηi −→ N

(
m,

σ2

n

)
in distribution,

i.e., the average of the first n i.i.d. random variables ηi converges in distribution to
the Gaussian random variable with mean m = E[ηi] and variance σ2/n.

1.7. Conditional probability and conditional expectation.

• The conditional probability of an event B given that the event A has happened is
given by

P (B|A) =
P (A ∩B)

P (A)
.

Note that if A and B are independent, then P (A ∩B) = P (A)P (B) and hence

P (B|A) =
P (A)P (B)

P (A)
= P (B).

Example 14 Suppose you are tossing a die twice. Consider the prob-
ability space (4). Let A be the event that the outcome of the first throw
is even, and B be the event that the sum of the outcomes is greater than
10. Then (see Table 1)

P (B|A) =
P (A ∩B)

P (A)
=

4/36

1/2
=

2

9
.

Note that P (B) = 1/6 < P (B|A). Hence the events A and B are depen-
dent.

If the event A is fixed, then P (B|A) defines a probability measure on (Ω,B).
• If η is a random variable on Ω, then conditional expectation of η given the event
A is

E[η|A] =

∫
Ω
η(ω)P (dω|A).

Example 15 Suppose you are tossing a die twice. Consider the proba-
bility space (4). Let A be the event that the outcome of the first throw is
even, and η be the random variable whose value is the sum of outcomes,
i.e., η({ω1, ω2}) = ω1 + ω2. Then

E[η|A] =

6∑
ω1=1

6∑
ω2=1

(ω1 + ω2)
P (ω1 & ω2 & ω1 ∈ {2, 4, 6})

1/2

=
∑

ω1∈{2,4,6}

6∑
ω2=1

(ω1 + ω2)
1/36

1/2
=

135

18
= 7.5.

Note that E[η] = 7 6= E[η|A].
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1.8. Applications to statistical mechanics. In this section, we consider some applica-
tion of the concepts we have discussed to statistical mechanics.

Exercise Consider a particle in 1D in contact with a heat bath whose states follow the
canonical distribution:

(20) µ(x, p) =
1

Z
e−βH(x,p), where Z =

∫
R2

e−βH(x,p)dxdp,

where H(x, p) = V (x) + p2

2 is its energy and β = (kBT )−1 (kB is Boltzmann’s constant).
Show that the mean kinetic energy equals to kBT/2, i.e., calculate the expected value of

E

[
p2

2

]
=

1

Z

∫
R2

p2

2
e−β(V (x)+p2/2)dxdp.

Use your result to show that for a system consisting of n particles with unit mass each of
which is moving in 3D, the mean kinetic energy is (3/2)nkBT .

2. Sampling and Monte-Carlo Integration

Reading: [1] (Chapter 3), [4] (Chapter 9). Monte-Carlo methods are those where one
evaluates something nonrandom using pseudorandom numbers. More precisely, one evalu-
ates a nonrandom quantity as the expected values of a random variable. On the contrary,
simulations produce random variables with a certain distribution with the purpose of just
looking at them. Typically, the error in Monte-Carlo methods decays as n−1/2 where n
is the number of samples which is worse that the error decay rate in most of determinis-
tic methods (it is usually at least as good as n−1). So, why bother? The reason is that
in some important situations deterministic methods simply cannot be used due to such
things as the “curse of dimensionality” or largeness of the problem. In some of these cases,
Monte-Carlo methods can be efficient. For example, to find the mean magnetization in a
3D Ising model with n sites, one need to average the value of the magnetization over 2n

different spin configurations. If we are considering a 3D 10× 10× 10 grid, then n = 1000,
and 21000 ∼ 10301, a huge number, that makes the deterministic calculation infeasible. On
the contrary, a Monte-Carlo calculation gives an accurate enough estimate in a reasonable
time.

2.1. Pseudorandom numbers. Pseudorandom numbers are generated by pseudorandom
number generators. A pseudorandom number generator produces a deterministic sequence
of numbers starting from a seed state that can be specified by the user. Good pseudorandom
number generators produce sequences that cannot be distinguished from random numbers
by simple tests. In C, the operator rand() produces a uniformly distributed pseudorandom
number in the interval [0 . . .RAND MAX], where RAND MAX is a constant defined in the
library stdlib.h. It is platform-dependent. This constant might not be large enough for
ambitions calculations such as sampling of random trajectories. rand() is claimed to be
bad in [4]. The author of this notes observed the appearance of periodicity in a long
but not-extremely-long sequence. Instead, one can use the C operator random() which is
claimed to be good enough for most Monte-Carlo calculations in [4].
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2.2. Sampling random variables with given distribution. Most programming lan-
guages have tools for generating a uniformly distributed random variable ξ on the interval
[0, 1].

Suppose we need to sample a random variable with a pdf f(x). Assume that we can
integrate f(x) analytically, i.e., have an analytic expression for the probability distribution
function F (x). We observe that∫ η

0
f(x)dx = F (η) = ξ. Hence η = F−1(ξ),

where F−1(ξ) is the inverse function of F . It exists if F (x) is strictly increasing. If ξ is
uniformly distributed on [0, 1], i.e., its probability distribution function is

Fξ(x) = P (ξ ≤ x) =


1, x ≥ 1,

x, 0 ≤ x < 1,

0, x < 0,

then the probability distribution of η is F (x). Indeed,

P (η ≤ x) = P (F−1(ξ) ≤ x) = P (ξ ≤ F (x)) = F (x).

Example 16 Suppose we need to generate an exponentially distributed
random variable η with pdf f(x) = ae−ax where a > 0 is a constant. The
probability distribution of ξ is given by

Fη(x) = P (η ≤ x) =

∫ x

0
ae−aydy = 1− e−ax.

Let ξ be a random variable uniformly distributed on [0, 1]. Then η can be
generated from ξ by

η = F−1
η (ξ) = − 1

a log(1− ξ).
Observing that 1 − ξ is also a random variable uniformly distributed on
[0, 1], we can choose to generate η by

η = F−1
η (ξ) = − 1

a log(ξ).

2.3. The Box-Muller algorithm. Suppose we need to generate a Gaussian random vari-
able η with mean 0 and variance σ2 while we have a built-in function for generating a
random variable ξ uniformly distributed on [0, 1]. Unfortunately, the pdf of η

f(x) =
1√

2πσ2
e−

x2

2σ2

is not analytically integrable. Therefore, we cannot use the method proposed above directly.
However, we can generate pairs of independent jointly Gaussian random variables (η1, η2)
given a pair of independent uniformly distributed on [0, 1] random variables (ξ1, ξ2). Since
the pdf of jointly Gaussian independent random variables is radially symmetric, we can
generate the polar radius r and polar angle θ of the pair of (η1, η2) and then obtain their
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Cartesian coordinates from the polar ones. Since the polar angle of (η1, η2) is uniformly
distributed on [0, 2π], we set

(21) θ = 2πξ2.

To sample the polar radius, we calculate

F (a) =P (r ≤ a) =
1

2πσ2

∫
√
x2+y2≤a

e−
x2+y2

2σ2 dxdy

=
1

2πσ2

∫ 2π

0
dθ

∫ a

0
e−

r2

2σ2 rdr

=
1

σ2
σ2

∫ a2/(2σ2)

0
e−tdt = 1− e−a2/(2σ2) = 1− ξ1.

Here we used the fact that if ξ1 is uniformly distributed on [0, 1], then so is 1− ξ1.

(22) a =
√
−2σ2 log ξ1.

Using Eqs. (21) and (22) we get the Box-Muller formulas for generating pairs of indepen-
dent jointly Gaussian random variables with mean 0 and variance σ2:

(23)

{
η1 = a cos θ =

√
−2σ2 log ξ1 cos(2πξ2)

η2 = a sin θ =
√
−2σ2 log ξ1 sin(2πξ2)

2.4. Monte-Carlo integration. Suppose we need to calculate an integral of the form

I =

∫ b

a
g(x)f(x)dx, where

f(x) ≥ 0, x ∈ [a, b], and

∫ b

a
f(x)dx = 1.

Such integral can be interpreted as the expected value of the function g of the random
variable η with the pdf f(x), i.e.,

I =

∫ b

a
g(x)f(x)dx =

∫ b

a
g(x)f(x)dx = E[g(η)].

Suppose we are able to sample i. i. d. random variables ηi each of which has the pdf f(x).
According to the strong law of large numbers,

lim
n→∞

1

n

n∑
i=1

g(ηi) = E[g(η)] a.s.

The integral I is called the estimand, the random variable g(η) is called the estimator, and
the quantity

(24)
1

n

n∑
i=1

g(ηi)
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is the estimate. This method of evaluating integrals is called the Monte-Carlo integration.
According to the central limit theorem,

1

n

n∑
i=1

g(ηi) −→ N

(
E[g(η)],

Var(g(η))

n

)
in distribution.

Therefore, the error of the estimate (24) is of the order of

(25) err ∼
√

Var(g(η))√
n

.

Eq. (25) suggests two ways to reduce the error of the Monte-Carlo integration: (i) to
increase the number of samples n, and (ii) to reduce the variance of g(η). Note that
increasing the number of samples is not very efficient approach, as the error decays as
n−1/2. A better idea is to try to reduce the variance of g(η). One approach to the variance
reduction is called the importance sampling.

2.5. Importance sampling. Suppose we need to calculate the integral

I =

∫ b

a
g(x)f(x)dx, where

f(x) ≥ 0, x ∈ [a, b], and

∫ b

a
f(x)dx = 1.

In order to reduce Var(g(η)) we can try to find a function h(x) with the following properties:

(1) The integral

I1 =

∫ b

a
f(x)h(x)dx

is easy to evaluate;
(2) h(x) ≥ 0;
(3) We can sample a random variable with the pdf

f(x)h(x)

I1
easily;

(4) g(x)/h(x) varies little.

Then we have

I =

∫ b

a
g(x)f(x)dx =

∫ b

a

g(x)

h(x)
f(x)h(x)dx = I1

∫ b

a

g(x)

h(x)

f(x)h(x)

I1
dx

= I1E
[g
h

(η)
]
∼ I1

n

n∑
i=1

g(ηi)

h(ηi)
,

where η has the pdf f(x)h(x)/I1. See the example with

I =

∫ 1

0
cos(x/5)e−5xdx

in [1].
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2.6. Monte Carlo integration in higher dimensions. Suppose we would like to eval-
uate the integral

(26) I =

∫
Ω
g(x)dx

where Ω ⊂ Rn. We proceed as we did in 1D. Let us generate a random variable η whose
pdf fη(x) is nonzero in Ω and zero elsewhere and rewrite Eq. (26) as

(27) I =

∫
Ω

g(x)

fη(x)
fη(x)dx

By the strong law of large numbers,

(28) I =

∫
Ω

g(x)

fη(x)
fη(x)dx = E

[
g(x)

fη(x)

]
≈ 1

N

N∑
i=1

g(xi)

fη(xi)
,

where xi, 1 ≤ i ≤ N , are samples of the random variable η with pdf fη(x).
Suppose η is uniformly distributed in Ω. Then its pdf is given by

(29) fη(x) =

{
1
|Ω| , x ∈ Ω

0, x /∈ Ω,

where |Ω| is the volume of Ω. In this case, Eq. (30) becomes:

(30) I =

∫
Ω

g(x)

fη(x)
fη(x)dx ≈ |Ω|

N

N∑
i=1

g(xi).

Similarly we proceed when we need to calculate an integral over a k-dimensional hyper-
surface S embedded into Rn:

(31) I =

∫
S
g(x)dσ,

where dσ is a surface element. Let η be a random variable whose pdf is supported at the
hyper surface S, i.e. fη(x) > 0 if and only if x ∈ S. Then the integral is approximated by

(32) I =

∫
S
g(x)dσ ≈ 1

N

N∑
i=1

g(xi)

fη(xi)
,

where xi, 1 ≤ i ≤ N are samples of the random variable η. If η is uniformly distributed on
the hypersurface S, then

(33) I =

∫
S
g(x)dσ ≈ |S|

N

N∑
i=1

g(xi),

where |S| is the measure (k-dimensional area) of S:

(34) |S| =
∫
S
dσ.
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Example 17 Consider the integral

(35) I =

∫
Sn−1

g(x)dσ,

where Sn−1 is the unit n− 1-dimensional sphere (n-sphere) embedded into Rn:

Sn−1 = {x = (x1, . . . , xn) ∈ Rn | x2
1 + . . .+ x2

n = 1}.
Let us generate N samples of random variable η uniformly distributed on Sn. This can
be done as follows. First we generate an array N × n of independent Gaussian random
variables with mean 0 and variance 1. It is well-known that n independent Gaussian
random variables with mean zero and variance 1 have the joint pdf

(36) fη1,...,ηn(x1, . . . , xn) =
1

(2π)n/2
e−

x21+...+x
2
n

2 ≡=
1

(2π)n/2
e−

r2

2 ,

where r :=
√
x2

1 + . . .+ x2
n. Let us treat each row of our array as a sample of a vector

random variable ξ with pdf given by Eq. (36). The distribution of ξ is spherically sym-
metric. Hence, we can obtain the desired random variable η uniformly distributed on the
unit sphere by normalizing the radius of ξ:

(37) η =
ξ√

ξ2
1 + . . .+ ξ2

n

.

In matlab, N samples of a random variable η uniformly distributed on the unit n-sphere
can be generated by the following set of commands:

xi = randn(N, n);

aux = sqrt(sum(xi.^2, 2))*ones(1, n);

eta = xi./aux;

The surface area of the unit sphere Sn−1 is given by

(38) |Sn−1| =
2πn/2

Γ(n2 )
,

where

Γ(x) :=

∫ ∞
0

tx−1e−tdt

is the Gamma-function. Thus, the integral (35) can be estimated as

S = 2*pi^(n/2)/gamma(n/2);

I = sum(g(eta))*S/N;

where n, N , and the function y = g(x) must be provided. A table of exact integrals of
some functions over unit hypersphere are found in [5].

• For n = 4 and g(x) = x2
1x

2
2, the exact integral (35) is

I =

∫
S3

x2
1x

2
2dσ =

π2

12
= 0.8224670 . . . ,

while its estimate using 106 samples is 0.8227420, and its error estimate is 10−3.

https://en.wikipedia.org/wiki/N-sphere
https://en.wikipedia.org/wiki/Gamma_function
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• For n = 10 and g(x) = x2
1, the exact integral (35) is

I =

∫
S9

x2
1dσ =

π5

120
= 2.550164 . . . ,

while its estimate using 106 samples is 2.548990, and its error estimate is 3 · 10−3.

3. Discrete time Markov chains

Think about the following problem,. Imagine a gambler who has $1 initially. At each
discrete moment of time t = 0, 1, . . ., the gambler can play $1 if he has it and win one
more $1 with probability p or lose it with probability q = 1− p. If the gambler runs out of
money, he is ruined and cannot play anymore. What is the probability that the gambler
will be ruined?

The gambling process described in this problem exemplifies a discrete time Markov
chain. In general, a discrete time Markov chain is defined as a sequence of random variables
(Xn)n≥0 taking a finite or countable set of values which we will denote by S and call the
set of states and characterized by the Markov property: the probability distribution of
Xn+1 depends only of the probability distribution of Xn and does not depend on Xk for
all k ≤ n− 1.

Definition 3. We say that a sequence of random variables (Xn)n≥0, Xn : Ω→ S ⊂ Z, is
a Markov chain with initial distribution λ and transition matrix P = (pij)i,j∈S if

(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P(Xn+1 = in+1 | Xn = in) = pinin+1 .

Note that the ith row of P is the probability distribution for Xn+1 conditioned on the
fact that Xn = i. Therefore, all entries of the matrix P are nonnegative, and the row sums
are equal to one:

pij ≥ 0,
∑
j∈S

P(Xn+1 = j | Xn = i) =
∑
j∈S

pij = 1.

A matrix P satisfying these conditions in called stochastic.
Some natural questions about a Markov chain are:

• What is the equilibrium probability distribution, i.e., the one that is preserved from
step to step?
• Does the probability distribution of Xn tend to the equilibrium distribution?
• How one can find the probability to reach some particular subset of states A ⊂ S?

What is the expected time to reach this subset of states?
• Suppose we have selected two disjoint subsets of states A and B. What is the

probability to reach first B rather than A starting from a given state? What is the
expected time to reach B starting from A?

Prior to addressing these question, we will go over some basic concepts.
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3.1. Time evolution of the probability distribution. If the set of states S is finite,
i.e., if |S| = N , the Pn is merely the nth power of P . If S is infinite, we define Pn by

(Pn)ij ≡ p(n)
ij =

∑
k1∈S

. . .
∑

kn−1∈S
pik1pk1k2 . . . pkn−1pj .

Theorem 6. Let (Xn)n≥0 be a Markov chain with initial distribution λ and transition
matrix P . Then for all n,m ≥ 0

(1) P(Xn = j) = (λPn)j;

(2) Pi(Xn = j) = P(Xn+m = j | Xm = i) = p
(n)
ij .

Proof. (1)

P(Xn = j) =
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j,Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1, . . . , X0 = i0)P(Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1)P(Xn−1 = in−1 | Xn−2 = in−1) . . .P(X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
λi0pi0i1 . . . pin−1j = (λPn)j .

(2) The second statement is proven similarly.
�

3.2. Communicating classes and irreducibility. We say that state i leads to state j
(denote it by i −→ j) if

Pi(Xn = j for some n ≥ 0) > 0.

If i leads to j and j leads to i we say that i and j communicate and write i ←→ j. Note
that i leads to j if and only if one can find a finite sequence k1, . . . , kn−1 such that

pik1 > 0, pk1k2 > 0, . . . , pkn−1j > 0.

This, in turn, is equivalent to the condition that p
(n)
ij > 0 for some n.

The relation ←→ is an equivalence relation as it is

(1) symmetric as if i←→ j then j ←→ i;
(2) reflective, i.e., i←→ i;
(3) transitive, as i←→ j and j ←→ k imply i←→ k.

Therefore, the set of states is divided into equivalence classes with respect to the relation
←→ called communicating classes.

Definition 4. We say that a communicating class C is closed if

i ∈ C, i −→ j imply j ∈ C.
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Once the chain jumps into a closed class, it stays there forever.
A state i is called absorbing is {i} is a closed class. In the corresponding network, the

vertex i has either only incoming edges, or no incident edges at all.

Definition 5. A Markov chain whose set of states S is a single communicating class is
called irreducible.

3.3. Invariant distributions and measures.

Definition 6. A measure on a Markov chain is any vector λ = {λi ≥ 0 | i ∈ S}. A
measure is invariant (a. k. a stationary or equilibrium) if

λ = λP.

A measure is a distribution if, in addition,
∑

i∈S λi = 1.

Theorem 7. Let the set of states S of a Markov chain (Xn)n≥0 be finite. Suppose that for
some i ∈ S

Pi(Xn = j) = p
(n)
ij → πj as n→∞.

Then π = {πi | i ∈ S} is an invariant distribution.

Proof. Since p
(n)
ij ≥ 0 we have πj ≥ 0. Show that

∑
j∈S πj = 1. Since S is finite, we can

swap the order of taking limit and summation:∑
j∈S

πj =
∑
i∈S

lim
n→∞

p
(n)
ij = lim

n→∞

∑
i∈S

p
(n)
ij = 1.

Show that π = πP :

πj = lim
n→∞

p
(n)
ij = lim

n→∞

∑
k∈S

p
(n−1)
ik pkj =

∑
k∈S

lim
n→∞

p
(n−1)
ik pkj =

∑
k∈S

πkpkj .

�

Remark If the set of states is not finite, then the one cannot exchange summation and

taking limit. For example, limn→∞ p
(n)
ij = 0 for all i, j for a simple symmetric random walk

on Z. {πi = 0 | i ∈ Z} is certainly an invariant measure, but it is not a distribution.

The existence of an invariant distribution does not guarantee convergence to it. For
example, consider the two-state Markov chain with transition matrix

P =

(
0 1
1 0

)
.

The distribution π = (1/2, 1/2) is invariant as

(1/2, 1/2)

(
0 1
1 0

)
= (1/2, 1/2).

However, for any initial distribution λ = (q, 1− q) where q ∈ [0, 1/2) ∪ (1/2, 1], the limit

lim
n→∞

Pn
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does not exist as

P 2k = I, P 2k+1 = P.

In order to eliminate such cases, we introduce the concept of aperiodic states.

Definition 7. Let us call a state i aperiodic, if p
(n)
ii > 0 for all sufficiently large n.

Theorem 8. Suppose P is irreducible and has an aperiodic state i. Then for all states j

and k, p
(n)
jk > 0 for all sufficiently large n. In particular, all states are aperiodic.

Proof. Since the chain is irreducible, there exist such r and s that p
(r)
ji > 0 and p

(s)
ik > 0.

Then for sufficiently large n we have

p
(r+n+s)
jk =

∑
i1,...,in∈S

p
(r)
ji1
pi1i2 . . . pin−1inp

(s)
ink
≥ p(r)

ji p
(n)
ii p

(s)
ik > 0.

�

Definition 8. We will call a Markov chain aperiodic if all its states are aperiodic.

Theorem 9. Suppose that (Xn)n≥0 is a Markov chain with transition matrix P and initial
distribution λ. Let P be irreducible and aperiodic, and suppose that P has an invariant
distribution π. Then

P(Xn = j)→ πj as n→∞ for all j.

In particular,

p
(n)
ij → πj as n→∞ for all i, j.

A proof of this theorem is found in [6]. In the case where the set of states is finite,
this result can be proven by means of linear algebra. A building block of this proof is the
Perron-Frobenius theorem.

Theorem 10. Let A be an N ×N matrix with nonnegative entries such that all entries of
Am are strictly positive for all m > M . Then

(1) A has a positive eigenvalue λ0 > 0 with corresponding left eigenvector x0 where all
entries are positive;

(2) if λ 6= λ0 is any other eigenvalue, then |λ| < λ0.
(3) λ0 has geometric and algebraic multiplicity one.

For sufficiently large n, all entries of of Pn for stochastic irreducible aperiodic matrices
P become positive. The proof of this fact is similar to the one of Theorem 8. Furthermore,
the largest eigenvalue of a stochastic matrix is equal to 1. Indeed, since the row sums of
P are ones, λ0 = 1 is an eigenvalue with the right eigenvector e = [1, . . . , 1]T . Show that
other eigenvalues do not exceed λ0 = 1 in absolute value. Let (λ, v) be an eigenvalue and
a corresponding right eigenvector of a stochastic matrix P . We normalize v so that

vi = max
k∈S
|vk| = 1.
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Since

λvi =
∑
k∈S

pikvk,

we have

|λi| =

∣∣∣∣∣ 1

vi

∑
k∈S

pikvk

∣∣∣∣∣ ≤ 1

vi

∑
k∈S

pik|vk| ≤
∑
k∈S

pik = 1.

Theorem 11. Every irreducible aperiodic Markov chain with a finite number of states N
has a unique invariant distribution π. Moreover,

lim
n→∞

qPn = π

for any initial distribution q.

Proof. The Perron-Frobenius theorem applied to a finite stochastic irreducible aperiodic
matrix P implies that the largest eigenvalue of P is λ0 = 1 and all other eigenvalues are
strictly less than 1 in absolute value. The left eigenvector π, corresponding to λ0 has
positive entries and can be normalized so that they sum up to 1. Hence,

π = πP,
N∑
i=1

πi = 1.

To establish the convergence, we consider the eigendecomposition of P :

P = V ΛU,

where Λ is the matrix with ordered eigenvalues along its diagonal:

Λ =


1

λ2

. . .

λN

 , 1 > |λ1| ≥ . . . ≥ |λN |,

V is the matrix of right eigenvectors of P : PV = V Λ, such that its first column is
e = [1, . . . , 1]T , and U = V −1 is a matrix of left eigenvectors of P : UP = ΛU . The
first row of U is π = [π1, . . . , πN ]. One can check that if UV = IN , these choices of the
first column of V and the first row of U are consistent. Therefore, taking into account that
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i=1 qi = 1, we calculate:

lim
n→∞

qPn

= lim
n→∞

[q1 q2 . . . qN ]


1 ∗ ∗ ∗
1 ∗ ∗ ∗

. . .
1 ∗ ∗ ∗




1
λn2

. . .

λnN



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗



= [1 ∗ . . . ∗]


1

0
. . .

0



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗


= [π1 π2 . . . πN ].

�

4. Time reversal and detailed balance

For Markov chains, the past and the future are independent given the present. This
property is symmetric in time and suggests looking at Markov chains with time running
backwards. On the other hand, convergence to equilibrium shows behavior that is asym-
metric in time. Hence, to complete time-symmetry, we need to start with the equilibrium
distribution.

For convenience, we will use the following notations: Markov(λ, P ) denotes the discrete-
time Markov chain with initial distribution λ and transition matrix P .

4.1. Detailed balance.

Definition 9. A stochastic matrix P and a measure λ are in detailed balance if

λipij = λjpji.

Suppose the set of states S is finite, the matrix P is irreducible, and the system is
distributed according to the invariant distribution π. The condition of detailed balance
means that as n → ∞, one will observe equal number of transitions from i to j and from
j to i for all i, j ∈ S.

The detailed balance condition gives us another way to check whether a given measure
λ is invariant.

Theorem 12. If P and λ are in detailed balance then λ is invariant for P .

Proof.

(λP )i =
∑
j∈S

λjpji = λi
∑
j∈S

pij = λi.

Hence λP = λ. �
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Definition 10. Let (Xn)n≥0 be Markov(λ, P ) where P is irreducible. We say that (Xn)n≥0

is reversible if for all N ≥ 1, (XN−n)0≤n≤N is Markov(λ, P ).

Theorem 13. Let P be an irreducible stochastic matrix and let λ be a distribution. Suppose
that (Xn)n≥0 is Markov(λ, P ). Then the following are equivalent:

(1) (Xn)n≥0 is reversible;
(2) P and λ are in detailed balance.

Proof. Both (1) and (2) imply that λ is invariant for P . Then both (1) and (2) are

equivalent to the statement that P̂ = P . �

5. Markov Chain Monte Carlo methods

As we have discussed, Monte Carlo methods are those where random numbers are used
in order to evaluate something nonrandom. Markov Chain Monte Carlo methods (MCMC)
are those where the estimation is done via constructing a Markov Chain whose invariant
distribution is the desired distribution. MCMC methods are used for numerical approxima-
tion of multidimensional integrals. In particular, such integrals arise in Bayesian parameter
estimation, computational physics, and computational biology. For example, consider the
problem of finding the expected value of g(η) where η is a random variable with pdf π(x),
x ∈ Rd:

(39) E[g(η)] =

∫
x∈Rd

g(x)π(x)dx.

Or, consider the problem of finding the expected value of g(η) in the case where Ω is a
finite set, |Ω| = N where N is huge. Let π(ω) be the probability distribution on Ω, then

(40) E[g(η)] =
∑
ω∈Ω

g(η(ω))π(ω),

Note that in both of the cases, one rarely knows π per se. Instead, a measure f proportional
to π is known. For example, think about the canonical pdf for n particles in 3D:

µ(x, p) =
1

Z
e−β(V (x)+|p|2/2), Z =

∫
R6n

e−β(V (x)+|p|2/2)dxdp.

The normalization constant Z, except for some simple cases, cannot be evaluated analyt-
ically. Therefore, µ(x, p) is, strictly speaking, unknown. However, for each (x, p) one can
calculate

f(x, p) = e−β(V (x)+|p|2/2)

that is proportional to µ(x, p)
Therefore, the problem is two-fold:

• The expected value is hard-to-evaluate due to ether high dimensionality of the
integral, so that numerical quadrature methods are unappreciable, or due to the
huge number of summands in the sum (think about numbers like N = 2n where
n ∼ 10k, k = 2, 3, 4 . . .). Moreover, π might be far from being uniform, and some
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kind of importance sampling is necessary to be able to obtain a satisfactory estimate
at a reasonable number of samples of η.
• The pdf or the probability distribution π is unknown. Instead, f , that is propor-

tional to π, is given.

5.1. Metropolis and Metropolis-Hastings algorithms. We will explain the idea of
the Metropolis algorithm on the example of the task of numerical approximation of the
sum in Eq. (40) where Ω is a finite set, |Ω| = N , N is huge. We wish to construct a
discrete-time Markov chain (Xn)n≥0, Xn : Ω → {1, . . . , N}, i.e., where the each random
variable Xn is simply an enumeration of the set of outcomes. Therefore, we may think
that the set of states S and the set of outcomes Ω are identical. In order to be able to
approximate the sum in Eq. (40), we need design the transition matrix P so that the the
distribution π is invariant, and for any initial distribution λ, λPn converges to π as n→∞.
Choosing P irreducible and aperiodic, we guarantee the achievement of the convergence to
the unique invariant distribution. A handy way to make P to have the desired invariant
measure π, it suffices to pick P to be in detailed balance with the known measure f that
is proportional to π, i.e., the transition probabilities should satisfy

fipij = fjpji.

Such a transition matrix is constructed in two steps. As A. Chorin puts it, first do some-
thing stupid and then improve it.

(1) Suppose Xn = k. Propose a move from state k according to a user supplied
irreducible aperiodic transition matrix Q = (qij)ij∈S In the original Metropolis
algorithm, the matrix Q must be symmetric, i.e., qij = qji. Suppose the proposed
move is from state k to state l.

(2) To guarantee that the condition fipij = fjpji holds, accept the proposed move with
the probability

(41) α = min

{
fl
fk
, 1

}
I.e., if the proposed state l is more likely than the current state k, move to the
new state. Otherwise, move there with probability fl/fk and stay in state k with
probability 1− fl/fk.

As a result, the transition probabilities pij are given by

(42) pij = qij min

{
fj
fi
, 1

}
, pii = 1−

∑
j 6=i

qij min

{
fj
fi
, 1

}
.

Let us check that P is in detailed balance with f . Assume i 6= j. Let fj/fi ≤ 1.
Then

fipij = fiqij
fj
fi

= fjqij = fjqji = fipji.
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If fj/fi > 1 then

fipij = fiqij = fiqji = fipji
fj
fi

= fjpij .

Therefore, we have constructed a discrete-time Markov chain converging to the
desired equilibrium distribution.

The Metropolis-Hastings is a generalization of the Metropolis algorithms for the case
where the matrix Q is not symmetric, i.e, qij 6= qij in general. It differs from the Metrop-
olis algorithm only by the definition of the acceptance probability α: in the Metropolis-
Hastings, α is given by

(43) α = min

{
fl
fk

qlk
qkl
, 1

}
Therefore, the transition probabilities pij are

(44) pij = qij min

{
fj
fi

qji
qij
, 1

}
, pii = 1−

∑
j 6=i

qij min

{
fj
fi

qji
qij
, 1

}
.

Exercise Check that P = (pij)i,j∈S and f are in detailed balance.
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