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1. Definitions

• A sample space Ω is the set of all possible outcomes.
• An event A is a subset of Ω.
• A σ-algebra B is a subset of the set of all subsets of Ω satisfying the following

axioms
(1) ∅ ∈ B and Ω ∈ B;
(2) If B ∈ B then Bc ∈ B (Bc is the complement of B in Ω, i.e., Bc ≡ Ω\B).
(3) If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋃

i

Ai ∈ B.

Corollary: If A = {A1, . . . , An, . . .} is a finite or countable collection in B then⋂
i

Ai ∈ B.

Indeed, ⋂
i

Ai =

(⋃
i

Aci

)c
.
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Example 1 Suppose you are tossing a die. For a single throw, the
sample space is Ω = {1, 2, 3, 4, 5, 6}. If you are interested in particular
number on the top, the natural choice of the σ-algebra is the set of all
subsets of Ω. Then |B| = 26 = 64. If you are interested only in whether
the outcome is odd or even, then a reasonable choice of σ-algebra is

B = {∅, {1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}}.

If you are interested only whether there is an outcome or not, you can
choose the coarsest σ-algebra

B = {∅, {1, 2, 3, 4, 5, 6}}.

• A probability measure P is a function P : B → [0, 1] such that
(1) P (Ω) = 1;
(2) 0 ≤ P (A) ≤ 1 for all A ∈ B.
(3) Countable additivity: If A = {A1, . . . , An, . . .} is a finite or countable col-

lection in B such that Ai ∩Aj = ∅ for any i, j, then

P

(⋃
i

Ai

)
=
∑
i

P (Ai).

Corollary: P (∅) = 0. Indeed,

1 = P (Ω) = P (Ω ∪ ∅) = P (Ω) + P (∅) = 1 + P (∅).

Hence, P (∅) = 0.
• A probability space is the triple (Ω,B, P ).
• A random variable η is a B-measurable function η : Ω→ R.

A function is called B-measurable if the preimage of any measurable subset of R
is in B. It is proven in analysis that it is suffices to check that

{ω ∈ Ω | η(ω) ≤ x} ∈ B for any x ∈ R.

• A probability distribution function of a random variable η is defined by

Fη(x) = P ({ω ∈ Ω | η(ω) ≤ x}) = P (η ≤ x).

Theorem 1. If F is a probability distribution function then
(1) F is nondecreasing, i.e. x < y implies F (x) ≤ F (y).
(2) limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
(3) F (x) is continuous from the right for every x ∈ R, i.e.,

lim
y→x+0

F (y) = F (x).

Example 2 Suppose you are tossing a die. Consider the probability
space

(1) (Ω = {1, 2, 3, 4, 5, 6},B = 2Ω, P (ω) = 1
6),
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where 2Ω is the set of all subsets of Ω, and ω ∈ Ω = {1, 2, 3, 4, 5, 6}.
Consider the random variable η(ω) = ω. The probability distribution
function is given by

Fη(x) =


0, x < 1,

j/6, j ≤ x < j + 1, j = 1, 2, 3, 4, 5

1, x ≥ 6.

• Suppose F ′η(x) exists. Then fη(x) ≡ F ′η(x) is called the probability density
function (pdf) of the random variable η, and

P (x < η ≤ x+ dx) = Fη(x+ dx)− Fη(x) = fη(x)dx+ o(dx).

Example 3 The Gaussian density

f(x) =
1√

2πσ2
e−

(x−m)2

2σ2 ,

where m and σ are constants. m is the mean, while σ is the standard
deviation.
Example 4 The density of an exponential random variable with pa-
rameter a > 0 is given by:

f(x) =

{
ae−ax, x ≥ 0,

0, x < 0.
.

Example 5 The density of a uniform random variable on an interval
[a, b] is

f(x) =
1

b− a
I[a,b](x) =

{
1
b−a , x ∈ [a, b],

0, otherwise.
.

Here I[a,b](x) is the indicator function of the interval [a, b].

2. Expected values and moments

Definition 1. Let (Ω,B, P ) be a probability space, and η be a random variable. Then the
expected value, or mean, of the random variable η is defined as

(2) E[η] =

∫
Ω
η(ω)dP.

If Ω is a discrete set,

E[η] =
∑
i

η(ωi)P (ωi).
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Example 6 Suppose you are tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The expected
value of η is

E[η] =

6∑
j=1

j 1
6 = 3.5

Suppose that the random variable η is fixed. Then we will omit the subscript in the
notation of its probability distribution function: Fη(x) ≡ F (x).

The integral in Eq. (2) can be rewritten using F (x):

E[η] =

∫
R
xP (x < η ≤ x+ dx) =

∫ ∞
−∞

xdF (x).

If a derivative f(x) of the probability distribution function F exists, then

E[η] =

∫ ∞
−∞

xf(x)dx.

If g is a function defined on the range of the random variable η (on η(Ω)), then the
expected value of this function is

E[g(η)] =

∫ ∞
−∞

g(x)dF (x).

Moments: Let us take g(x) = xn.

E[ηn] =

∫ ∞
−∞

xndF (x).

Central moments: Let us take g(x) = (x− E[η])n.

E[(η − E[η])n] =

∫ ∞
−∞

(x− E[η])ndF (x).

Variance = 2nd central moment:

Var(η) = E[(η − E[η])2) =

∫ ∞
−∞

(x− E[η])2dF (x).

Example 7 Suppose you are tossing a die. Consider the probability space
(1) and the random variable η(ω) = ω, ω = 1, 2, 3, 4, 5, 6. The variance of η
is

Var(η) =
1

6

6∑
j=1

(j − 3.5)2 =
35

12
= 2.91(6).

The standard deviation:

σ(η) =
√

Var(η).
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3. Independence, joint distributions, covariance

• Two events A,B ∈ B are independent if

P (A ∩B) = P (A)P (B).

• Two random variables η1 and η2 are independent if the events

(3) {ω ∈ Ω | η1(ω) ≤ x} and {ω ∈ Ω | η2(ω) ≤ y}

are independent for all x, y ∈ R.

Example 8 Suppose you are tossing a die twice. Consider the proba-
bility space

(4)
(

Ω = {1, 2, 3, 4, 5, 6}2,B = 2Ω2
, P ({ω1, ω2}) = 1/36

)
, 1 ≤ ω1, ω2 ≤ 6.

Let η1 and η2 be random variables equal to the outcomes of the first and

Table 1. Two throws of a die. Values of the random variables ξ(ω1, ω2) =
ω1 + ω2 (left) and β(ω1, ω2) = ω1 − ω2 (right).

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

1 2 3 4 5 6

1 0 1 2 3 4 5
2 -1 0 1 2 3 4
3 -2 -1 0 1 2 3
4 -3 -2 -1 0 1 2
5 -4 -3 -2 -1 0 1
6 -5 -4 -3 -2 -1 0

the second throws respectively. These random variables are independent.
Now consider the random variables η(ω1, ω2) = ω1 and ξ(ω1, ω2) = ω1+ω2

(see Table 1, left). We can show that η and ξ are dependent by taking
e.g., x = 1 and y = 2 in Eq. (3):

P (η ≤ 1 & ξ ≤ 2) = 1
36 6= P (η ≤ 1)P (ξ ≤ 2) = 1

6 ·
1
36 = 1

216 .

Finally, we consider the random variables ξ(ω1, ω2) = ω1+ω2 and β(ω1, ω2) =
ω1 − ω2 (see Table 1, right). We can show that they are dependent by
taking e.g., x = 2 and y = −1 in Eq. (3):

P (ξ ≤ 2 & β ≤ −1) = 0 6= P (ξ ≤ 2)P (β ≤ −1) = 1
36 ·

15
36 = 5

432 .

• The joint distribution function of two random variables η1 and η2 is given by

Fη1η2(x, y) = P ({ω ∈ Ω | η1(ω) ≤ x, η2(ω) ≤ y}) = P (η1(ω) ≤ x, η2(ω) ≤ y) .



6 MARIA CAMERON

• If the second mixed derivative of Fη1η2 exists, it is called the joint probability
density of η1 and η2 and denoted by

fη1η2(x, y) :=
∂Fη1η2(x, y)

∂x∂y
.

In this case,

Fη1,η2(x, y) =

∫ x

−∞

∫ y

−∞
fη1η2(x, y)dxdy.

Exercise Show that two random variables are independent if and only if

Fη1η2(x, y) = Fη1(x)Fη2(y).

Furthermore, if the joint pdf fη1η2(x, y) exists, then η1 and η2 are independent iff

fη1η2(x, y) = fη1(x)fη2(y).

• Given the joint pdf fη1η2 , one can obtain fη1(x) by

fη1(x) =

∫ ∞
−∞

fη1η2(x, y)dy.

In this equation, fη1 is called a marginal of fη1η2 , and the variable η2 is integrated
out.
• Properties of expected value and variance It follows from the definition, that

the expected value is a linear functional:

(5) E[aη1 + bη2] = aE[η1] + bE[η2].

•
(6) Var(aη) = a2Var(η).

• If η1 and η2 are independent, then

(7) Var(η1 + η2) = Var(η1) + Var(η2).

If η1 and η2 are dependent, (7) is not true: take η1 = η2. In general,

(8) Var(η1 + η2) = Var(η1) + Var(η2) + 2Cov(η1, η2),

where Cov(η1, η2) is the covariance of η1 and η2 – see below. You will see below that
(7) does not imply that η1 and η2 are independent, only that they are uncorrelated.

Example 9 Suppose you are tossing a die twice. Consider the proba-
bility space and random variables introduced in Example 8. Then

E[ξ] = E[η1 + η2] = E[η1] + E[η2] = 7.

E[β] = E[η1 − η2] = E[η1] + E[−η2] = 0.

Var[ξ] = Var[η1 + η2] = Var[η1] + Var[η2] = 35
6 = 5.8(3).

Var[β] = Var[η1 − η2] = Var[η1] + Var[−η2] = Var[η1] + Var[η2] = 35
6 = 5.8(3).
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Example 10 Consider the Bernoulli random variable

(9) η =

{
1, P (1) = p,

0, P (0) = 1− p.

Its expected value and variance are

E[η] = 1 · p+ 0 · (1− p) = p,

Var(η) = (1− p)2 · p+ (0− p)2 · (1− p) = p(1− p).

Now consider the sum of n independent copies of η:

ξ :=
n∑
i=1

ηi.

Using Eq. (5) we calculate E[ξ]:

E[ξ] =

n∑
ı=1

E[ηi] = np.

Since ηi, 1 ≤ i ≤ n, are independent, we can calculate Var(ξ) using Eq.
(7):

Var(ξ) =
n∑
i=1

Var(ηi) = np(1− p).

Finally, consider the average of n independent copies of η:

ζ :=
1

n

n∑
i=1

ηi ≡
ξ

n
.

Using Eqs. (5) and (6), we find

E[ζ] = p,

Var(ζ) = Var

(
ξ

n

)
=

1

n2
Var(ξ) =

p(1− p)
n

.

• The covariance of two random variables η1 and η2 is defined by

Cov(η1, η2) = E[(η1 − E[η1])(η2 − E[η2])].

Remark If η1 and η2 are independent, then Cov(η1, η2) = 0. If Cov(η1, η2) = 0
then η1 and η2 are uncorrelated. Note that uncorrelated random variables are not
necessarily independent.
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Example 11 Suppose you are tossing a die twice. Consider the prob-
ability space and random variables introduced in Example 8. As we have
established in Example 8, ξ and β are dependent. However, they are
uncorrelated. Indeed,

Cov(ξ, β) =
∑

1≤ω1≤6, 1≤ω2≤6

(ω1 + ω2 − 7)(ω1 − ω2)P ({ω1, ω2})

=
1

36

( ∑
ω1<ω2

(ω1 + ω2 − 7)(ω1 − ω2) +
∑
ω1>ω2

(ω1 + ω2 − 7)(ω1 − ω2)

)
= 0.

Example 12 A vector-valued random variable η = [η1, . . . , ηn] is jointly
Gaussian if

P (x1 < η1 ≤ x1 + dx1, . . . , xn < ηn ≤ xn + dxn) =
1

Z
e−

1
2

(x−m)>A−1(x−m)dx+ o(dx),

where x = [x1, . . . , xn]>, m = [m1, . . . ,mn]>, dx = dx1 . . . dxn, and A is
a symmetric positive definite matrix. The normalization constant Z is
given by

Z = (2π)n/2|A|1/2, where |A| = detA.

In the case of jointly Gaussian random variables, the covariance matrix
C whose entries are

Cij = E[(ηi − E[ηi])(ηj − E[ηj ])]

is equal to A. Two jointly Gaussian random variables are independent if
and only if they are uncorrelated.

4. Chebyshev’s inequality

Chebyshev’s inequality holds for any random variable. It is a very useful theoretical
tool for proving various estimates. In practice, it often gives too rough estimates which
is a consequence of its universality. Chebyshev’s inequality is not improvable, as we can
construct a random variable for which it turns into an equality.

Theorem 2. Let η be a random variable. Suppose g(x) is a nonnegative, nondecreasing
function (i.e., g(x) ≥ 0, g(a) ≤ g(b) whenever a < b). Then for any a ∈ R

(10) P (η ≥ a) ≤ E[g(η)]

g(a)
.

Proof.

E[g(η)] =

∫ ∞
−∞

g(x)dF (x)

≥
∫ ∞
a

g(x)dF (x) ≥ g(a)

∫ ∞
a

dF (x) = g(a)P (η ≥ a).

�
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Given a random variable η we define a random variable

ξ := |η − E[η]|.

Define

g(x) =

{
x2, x ≥ 0,

0, x < 0.
.

Plugging this into Eq. (10) we obtain

P (|η − E[η]| ≥ a) ≤ Var(η)

a2
.

Example 13 Suppose you are tossing a die twice. Consider the probabil-
ity space and random variables introduced in Example 8. We will compare
the exact probabilities with their Chebyshev estimates.

P (|ξ − 7| ≥ 1) = P (ξ 6= 7) = 1− 6
36 = 5

6 = 0.8(3),
Var(ξ)

1
= 35

6 = 5.8(3);

P (|ξ − 7| ≥ 2) = P (ξ ≤ 5 or ξ ≥ 9) = 20
36 = 5

9 = 0.(5),
Var(ξ)

4
= 35

24 = 1.458(3);

P (|ξ − 7| ≥ 3) = P (ξ ≤ 4 or ξ ≥ 10) = 12
36 = 1

3 = 0.(3),
Var(ξ)

9
= 35

54 = 0.6(481);

P (|ξ − 7| ≥ 4) = P (ξ ∈ {2, 3, 11, 12}) = 6
36 = 1

6 = 0.1(6),
Var(ξ)

16
= 35

96 = 0.36458(3);

P (|ξ − 7| ≥ 5) = P (ξ ∈ {2, 12}) = 2
36 = 1

18 = 0.0(5),
Var(ξ)

25
= 35

150 = 0.2(3);

Choosing a = kσ we get

P (|η − E[η]| ≥ kσ) ≤ 1

k2
.

This means that for any random variable η defined on any probability space we have that
the probability that η deviates from its expected value by at least k standard deviations
does not exceed 1/k2.

The bounds given Chebyshev’s inequality cannot be improved in principle, because they
are exact for the random variable

η =


1, P = 1

2k2
,

0, P = 1− 1
k2
,

−1, P = 1
2k2
.

.

It is easy to check that E[η] = 0, Var(η) = 1
k2

. Hence

P (|η| ≥ 1) = 1
k2

=
Var(η)

12
,

i.e. Chebyshev’s inequality turns into an equality.
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5. Types of convergence of random variables

Suppose we have a sequence of random variables {η1, η2, . . .}. In probability theory, there
exist several different notions of convergence of a sequence of random variables {η1, η2, . . .}
to some limit random variable η.

• {η1, η2, . . .} converges in distribution or converges weakly, or converges in
law to η if

(11) lim
n→∞

Fn(x) = F (x) for every x where F (x) is continuous,

where Fn and F are the probability distribution functions of ηn and η respectively.

Remark Convergence of pdfs fn(x) implies convergence of Fn(x). The converse is
not true in general. For example, consider Fn(x) = x − 1

2πn sin(2πnx), x ∈ (0, 1).
The corresponding pdf is fn(x) = 1 − cos(2πnx), x ∈ (0, 1). {Fn(x)} converges to
F (x) = x, i.e., to the uniform distribution, while {fn(x)} does not converge at all.

Remark In the discrete case, the convergence of probability mass functions f(k) :=
P (η = k) implies the convergence of the probability distribution functions.

Example 14 Consider the sum of n independent copies of the Bernoulli
random variable as in Example 10:

(12) ξ =

n∑
i=1

ηi, where ηi =

{
1, P (1) = p,

0, P (0) = 1− p.

Its probability distribution is the binomial distribution given by

(13) f(k;n, p) ≡ P (ξ = k) =

(
n
k

)
pk(1− p)n−k,

where

(
n
k

)
is the number of k-combinations of the set of n elements:(

n
k

)
=

n!

k!(n− k)!
.

Now we let n→∞ and p→ 0 in such a manner that the product np (i.e.,
the expected value of ξ) remains constant. We introduce the parameter

λ := np.

Consider the sequence of random variables ξn where ξn is the sum of n
independent copies of Bernoulli random variable with p = λ/n, i.e,

(14) ξn =
n∑
i=1

η
(n)
i , where η

(n)
i =

{
1, P (1) = λ/n,

0, P (0) = 1− λ/n.
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Plugging in p = λ/n in the results of Example 10 we find the expected
value and the variance:

E[ξn] = n
λ

n
= λ.

Var(ξn) = n
λ

n

(
1− λ

n

)
= λ

(
1− λ

n

)
.

We will show that the sequence ξn converges to the Poisson random vari-
able with parameter λ in distribution. Consider the limit

lim
n→∞

f

(
k;n,

λ

n

)
= lim

n→∞

n(n− 1) . . . (n− k + 1)

k!

λk

nk

(
1− λ

n

)n−k
=

λk

k!
lim
n→∞

n(n− 1) . . . (n− k + 1)

nk
lim
n→∞

(
1− λ

n

)n
lim
n→∞

(
1− λ

n

)−k
The first limit in the equation above is 1 as n(n − 1) . . . (n − k + 1) =
nk + O(nk−1). The second limit can be calculated using the well-known
fact that

lim
n→∞

(
1 +

1

n

)n
= e.

Hence

lim
n→∞

(
1− λ

n

)n
= e−λ.

The third limit is 1. Therefore,

lim
n→∞

n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!
e−λ,

which is the Poisson distribution with parameter λ.
• {η1, η2, . . .} converges in probability to η if for any ε > 0

(15) lim
n→∞

P (|ηn − η| ≥ ε) = 0

Remark Convergence in probability implies convergence in distribution.

Proof. We will prove this fact for the case of scalar random variables. We have
limn→∞ P (|ηn − η| ≥ ε) = 0, we need to prove limn→∞ P (ηn ≤ x) = P (η ≤ x) for
every x where Fη is continuous. First we show an auxiliary fact that for any two
random variables ξ and ζ, x ∈ R and ε > 0

(16) P (ξ ≤ a) ≤ P (ζ ≤ a+ ε) + P (|ξ − ζ| > ε).
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Indeed,

P (ξ ≤ a) = P (ξ ≤ a & ζ ≤ a+ ε) + P (ξ ≤ a & ζ > a+ ε)

≤ P (ζ ≤ a+ ε) + P (ξ − ζ ≤ a− ζ & a− ζ < −ε)
≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε)
≤ P (ζ ≤ a+ ε) + P (ζ − ξ < −ε) + P (ζ − ξ > ε)

= P (ζ ≤ a+ ε) + P (|ζ − ξ| > ε).

Applying Eq. (16) to ξ = ηn and ζ = η with a = x and a = x− ε, we get

P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε)

P (η ≤ x− ε) ≤ P (ηn ≤ x) + P (|ηn − η| > ε).

P (η ≤ x− ε)− P (|ηn − η| > ε) ≤ P (ηn ≤ x) ≤ P (η ≤ x+ ε) + P (|ηn − η| > ε).

Taking the limit n→∞ and taking into account that limi→∞ P (|ηn − η| ≥ ε) = 0,
we get

Fη(x− ε) ≤ lim
n→∞

Fηn(x) ≤ Fη(x+ ε).

If x is a point of continuity of Fη,

lim
ε→0

Fη(x− ε) = lim
ε→0

Fη(x+ ε) = Fη(x).

Therefore, taking the limit ε→ 0 we obtain the weak convergence:

lim
n→∞

Fηn(x) = Fη(x)

for any x where Fη(x) is continuous. �

Remark The converse is, generally, not true. However, convergence in distribution
to a constant random variable implies convergence in probability.

• {η1, η2, . . .} converges almost surely or almost everywhere or with proba-
bility 1 or strongly to η if

(17) P
(

lim
n→∞

ηn = η
)

= 1.

Remark Convergence almost surely implies convergence in probability (by Fatou’s
lemma) and in distribution.

• To summarize,

(18) ηi → η almost surely ⇒ ηi → η in probability ⇒ ηi → η in distribution
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6. Laws of Large Numbers and the Central Limit Theorem

• Let {η1, η2, . . .} be a sequence of random variables with finite expected values {m1 =
E[η1],m2 = E[η2], . . .}. Define

ξn =
1

n

n∑
i=1

ηi, ξ̄n =
1

n

n∑
i=1

mi.

Definition 2. (1) The sequence of random variables ηn satisfies the Law of Large
Numbers if ξn − ξ̄n converges to zero in probability, i.e., for any ε > 0

lim
n→∞

P (|ξn − ξ̄n| > ε) = 0.

(2) The sequence of random variables ηn satisfies the Strong Law of Large Numbers
if ξn − ξ̄n converges to zero almost surely, i.e., for almost all ω ∈ Ω

lim
n→∞

ξn − ξ̄n = 0.

• If the random variables ηn are independent and if Var(ηi) ≤ V <∞, then the Law
of Large Numbers holds by the Chebyshev Inequality (10):

P (|ξn − ξ̄n| > ε) = P

(∣∣∣∣∣
n∑
i=1

ηi −
n∑
i=1

mi

∣∣∣∣∣ > nε

)

≤ Var(η1 + . . .+ ηn)

ε2n2
≤ V

ε2n
→ 0 as n→∞.

•

Theorem 3. (Khinchin) A sequence of independent identically distributed random
variables {ηi} with E[ηi] = m and E[|ηi|] <∞ satisfies the Law of Large Numbers.
•

Theorem 4. (Kolmogorov) A sequence of independent identically distributed ran-
dom variables with finite expected value and variance satisfies the Strong Law of
Large Numbers.
•

Theorem 5. (The central limit theorem) Let {η1, η2, . . .} be a sequence of
independent identically distributed (i.i.d.) random variables with m = E[ηi] and
0 < σ2 = Var(ηi) <∞, then

(19)
(
∑n

i=1 ηi)− nm
σ
√
n

−→ N(0, 1) in distribution,

i.e., converges weakly to the standard normal distribution N(0, 1) (i.e., the Gaussian
distribution with mean 0 and variance 1) as n→∞.

A proof via Fourier transform can be found in [1]. Another proof making use of
characteristic functions can be found in [2].
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Remark Eq. (19) can be recasted as

(20)
1

n

n∑
i=1

ηi −→ N

(
m,

σ2

n

)
in distribution,

i.e., the average of the first n i.i.d. random variables ηi converges in distribution to
the Gaussian random variable with mean m = E[ηi] and variance σ2/n.

7. Conditional probability and conditional expectation

• The conditional probability of an event B given that the event A has happened is
given by

P (B|A) =
P (A ∩B)

P (A)
.

Note that if A and B are independent, then P (A ∩B) = P (A)P (B) and hence

P (B|A) =
P (A)P (B)

P (A)
= P (B).

Example 15 Suppose you are tossing a die twice. Consider the prob-
ability space (4). Let A be the event that the outcome of the first throw
is even, and B be the event that the sum of the outcomes is ≥ 10. Then
(see Table 1)

P (B|A) =
P (A ∩B)

P (A)
=

4/36

1/2
=

2

9
.

Note that P (B) = 1/6 < P (B|A). Hence the events A and B are depen-
dent.

If the event A is fixed, then P (B|A) defines a probability measure on (Ω,B).
• If η is a random variable on Ω, then conditional expectation of η given the event
A is

E[η|A] =

∫
Ω
η(ω)P (dω|A) =

∫
Ω
η(ω)

P (dω ∩A)

P (A)
=

∫
A η(ω)P (dw)

P (A)
.

Example 16 . Suppose you are tossing a die twice. Consider the prob-
ability space (4). Let A be the event that the outcome of the first throw is
even, and η be the random variable whose value is the sum of outcomes,
i.e., η({ω1, ω2}) = ω1 + ω2. Then

E[η|A] =
6∑

ω1=1

6∑
ω2=1

(ω1 + ω2)P ({ω1, ω2} | ω1 ∈ {2, 4, 6}).



BASIC CONCEPTS OF PROBABILITY 15

Let us calculate P ({ω1, ω2} | ω1 ∈ {2, 4, 6}).

P ({ω1, ω2} | ω1 ∈ {2, 4, 6}) =
P ({ω1, ω2} ∩ (ω1 ∈ {2, 4, 6}))

P (ω1 ∈ {2, 4, 6})

=

{
0, ω1 ∈ {1, 3, 5},
P ({ω1,ω2})

P (ω1∈{2,4,6}) = 1/36
1/2 = 1

18 , ω1 ∈ {2, 4, 6}.

Now we continue our calculation:

E[ω1 + ω2 | ω1 ∈ {2, 4, 6}] =
∑

ω1∈{2,4,6}

6∑
ω2=1

(ω1 + ω2)
1

18
=

135

18
= 7.5.

Note that E[η] = 7 6= E[η|A] = 7.5.
• Now we show how one can construct new random variables using conditional prob-

ability. For simplicity, we start with partitioning the set of outcomes Ω into a finite
or countable number of disjoint measurable subsets:

Ω =
⋃
i

Ai, where Ai ∈ B, Ai ∩Aj = ∅.

Definition 3. Let η be a random variable on the probability space (Ω,B, P ). Let
A = {Ai} be a partition of Ω as above. Define a new random variable E[η|A] as
follows:

(21) E[η|A] =
∑
i

E[η|Ai]χ(Ai),

where χ(Ai) is the indicator function of Ai:

χ(Ai;ω) =

{
1, ω ∈ Ai,
0, ω /∈ Ai.

Remark Note that E[η|A] is a random variable as it is a function of the outcome
ω. Indeed,

E[η|A](ω) = E[η|Ai] where Ai 3 ω.

Example 17 Suppose you are tossing a die twice. Let us partition the
set of outcomes as follows:

Ω =
6⋃
i=1

{(ω1, ω2) | ω1 = i}.

The corresponding partition A is

A = {{(ω1, ω2) | ω1 = i}}6i=1 .
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Take the random variable ξ = ω1 + ω2 (see Table 1, left), the sum of
numbers on the top. Construct a new random variable

E[ξ|A] =

6∑
i=1

E[ξ|ω1 = i]χ(ω1 = i) =

6∑
i=1

(i+ 3.5)χ(ω1 = i)

= 4.5χ(ω1 = 1) + 5.5χ(ω1 = 2) + 6.5χ(ω1 = 3)

+ 7.5χ(ω1 = 4) + 8.5χ(ω1 = 5) + 9.5χ(ω1 = 6).

• Now we define the conditional expectation of one random variable η given the other
random variable θ. First we assume that θ assumes a finite or countable number
of values {θ1, θ2, . . .}. Define the partition A where

Ai = {ω ∈ Ω | θ = θi}.

Definition 4. We define a new random variable E[η|θ] as a the following function
of the random variable θ:

E[η|θ] := E[η|A], i.e., E[η|θ] = E[η|Ai] if θ = θi.

Example 18 Suppose you are tossing a die twice. Let (ω1, ω2) be the
numbers on the top. Define random variables ξ = ω1 + ω2 and θ = ω1.
Then it follows from our calculation from the previous example that

E[ξ|θ] = 3.5 + θ.

• Now we give generalizations of E[η|A] and E[η|θ] defined for a partition of Ω into
discrete subsets.

Definition 5. Let (Ω,B, P ) be a probability space and η be a random variable. Let
A be another σ-algebra defined on Ω that is coarser than B, i.e., if A ∈ A then
A ∈ B (i.e., A ⊂ B). Then the conditional expectation of η with respect to the
σ-algebra A is the random variable denoted by E[η|A] satisfying∫

A
E[η|A]P (dω) =

∫
A
η(ω)P (dω) for any A ∈ A.

Suppose θ is another random variable on (Ω,B, P ). The σ-algebra generated by
θ is the σ-algebra σ(θ) generated by the sets

{ω ∈ Ω | θ(ω) ≤ x},
I.e., σ(θ) is the smallest σ-algebra containing all of these sets. Obviously, since θ
is B-measurable, σ(θ) ⊂ B.

Example 19 Consider the probability space with the set of outcomes
R2, Borel σ-algebra B (i.e., the one generated by all open sets) and the
probability measure

P (B) =

∫
B

1

Z
e−(x2+y2)dxdy, Z =

∫
R2

e−(x2+y2)dxdy = π, B ∈ B.
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Consider the random variables η(x, y) = x and θ(x, y) =
√
x2 + y2. The

σ-algebra σ(θ) is generated by all balls centered at the origin:

{(x, y) ∈ R2 |
√
x2 + y2 ≤ z}.

Definition 6. The conditional expectation E[η|θ] of a random variable η given a
random variable θ is the conditional expectation of η with respect to the σ-algebra
σ(θ) generated by the random variable θ, i.e.,

E[η|θ] = E[η|σ(θ)].

• Consider the case where the joint pdf of random variables η and θ fη,θ(x, y) exists.
Then we define the conditional probability distribution

(22) fη|θ(x|y) :=
fη,θ(x, y)

fθ(y)
.

Then

P (a < η ≤ b | θ = y) =

∫ b

a
fη|θ(x|y)dx,

where the left-hand side of the equation above is understood as

P (a < η ≤ b | θ = y) = lim
ε→0+0

P (a < η ≤ b | |θ − y| < ε).

Example 20 Consider the probability space as in Example 19. Define

the random variables η(x, y) = x and θ(x, y) =
√
x2 + y2. We want to

calculate

P (a < η ≤ b | θ = z) = P (a < x ≤ b |
√
x2 + y2 = z)

The set
√
x2 + y2 = z is a circle centered at the origin of radius z. Since

the probability density on every circle is uniform, this probability is the
ratio of the total arc length of segments of the circle with a < x ≤ b to
the arc length of the circle (see Fig. 1). Therefore,

P (a < η ≤ b | θ = z) =
1

π

(
arccos

(
max{a,−z}

z

)
− arccos

(
min{b, z}

z

))
;

The conditional expectation of η given θ is

E[η|θ] =

∫ ∞
−∞

xfη|θ(x|y)dx.

The conditional variance is defined by

Var(η|θ) := E[|η − E[η|θ]|2 | θ].
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ba z

z

Figure 1. Illustration to Example 20. The subsets on the circle θ =√
x2 + y2 = z where a < η = x ≤ b are shown in red.

Example 21 Suppose the joint pdf of random variables η and θ is given
by

fη,θ(x, y) =
1

Z
e−β(x2+y2+x2y2) where Z :=

∫
R2

e−β(x2+y2+x2y2)dxdy

is the partition function. Note that this pdf is the Gibbs measure for
the overdamped Langevin dynamics in the potential energy landscape
V (x, y) = x2 + y2 + x2y2. Level sets of this potential are shown in Fig.
2. Let us find fη|θ(x|y), E[η|θ], and Var(η|θ). First we find the marginal
density

fθ(y) =
1

Z

∫ ∞
−∞

e−β(x2+y2+x2y2)dx =
1

Z

√
π

β(1 + y2)
e−βy

2
.

Next, we find

fη|θ(x|y) =
1
Z e
−β(x2+y2+x2y2)

1
Z

√
π

β(1+y2)
e−βy2

=

√
β(1 + y2)

π
e−βx

2(y2+1).

Then the conditional expectation of η given θ is

E[η|θ] =

∫ ∞
−∞

x

√
β(1 + y2)

π
e−βx

2(y2+1)dx = 0.
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Figure 2. Level sets of the potential V (x, y) = x2 + y2 + x2y2.

Finally, we find Var(η|θ):

Var(η|θ) =

∫ ∞
−∞

x2

√
β(1 + y2)

π
e−βx

2(y2+1)dx

=

√
β(1 + y2)

π

√
π

2β3/2(1 + y2)3/2
=

1

2β(1 + y2)
.

• Conditional expectation as the best approximation. Imagine that you are
considering two random variables η and θ, and you wish to approximate η with a
function of θ. We will show that the best approximation of η by a function of θ in
the least squares sense is E[η|θ].

Theorem 6. Let g(θ) be any measurable function of θ. Then

(23) E[(η − E[η|θ])2] ≤ E[(η − g(θ))2].

Proof. We will prove this fact for the case where the set of values of θ is at most
countable: θ(ω) ∈ {θ1, θ2, . . .}. Any function g(θ) can be written as

g(θ) = E[η|θ] + (g(θ)− E[η|θ]).

We plug this into the right-hand side of Eq. (23) and partition the set of outcomes
Ω into nonintersecting subsets

Zi = {ω ∈ Ω | θ(ω) = θi}.
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We have:

E[(η − g(θ))2] =

∫
Ω

(η(ω)− E[η|θ]− (g(θ)− E[η|θ]))2P (dω)

=
∑
i

∫
Zi

(η − E[η|θ]− (g(θ)− E[η|θ]))2P (dω)

=
∑
i

∫
Zi

(η − E[η|θ])2P (dω)

−2
∑
i

(g(θi)− E[η|Zi])
∫
Zi

(η − E[η|Zi])P (dω)

+
∑
i

(g(θi)− E[η|Zi])2

∫
Zi

P (dω).

Taking into account that∫
Zi

(η − E[η|Zi])P (dω) = E[η|Zi]− E[η|Zi] = 0,

we continue:

E[(η − g(θ))2] =E[(η − E[η|θ])2] +
∑
i

(g(θi)− E[η|Zi])2P (Zi)

≥E[(η − E[η|θ])2].

�

8. Applications to statistical mechanics

In this section, we consider some application of the concepts we have discussed to sta-
tistical mechanics.

Exercise Consider a particle in 1D in contact with a heat bath whose states follow the
canonical distribution:

(24) µ(x, p) =
1

Z
e−βH(x,p), where Z =

∫
R2

e−βH(x,p)dxdp,

where H(x, p) = V (x) + p2

2 is its energy and β = (kBT )−1 (kB is Boltzmann’s constant).
Show that the mean kinetic energy equals to kBT/2, i.e., calculate the expected value of

E

[
p2

2

]
=

1

Z

∫
R2

p2

2
e−β(V (x)+p2/2)dxdp.

Use your result to show that for a system consisting of n particles with unit mass each of
which is moving in 3D, the mean kinetic energy is (3/2)nkBT .
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8.1. The Dirac probability measure. The concept of the Dirac δ-function δ(x) is com-
monly employed in statistical mechanics. Prior to move on, we review its definition and
some of its properties.

Definition 7. The Dirac δ-function δ(x) is the probability measure on R with the following
properties

(1)

δ(x) =

{
+∞, x = 0,

0, x 6= 0,

(2) ∫ ∞
−∞

δ(x)dx = 1.

Properties of δ-function

(1) Symmetry:

δ(x) = δ(−x).

(2) Scaling:

δ(ax) =
δ(x)

|a|
for any a ∈ R\{0}.

(3) Composition: let g(x) be continuously differentiable and {xi}i∈I , be the set of its
zeros. Assume that I is finite or countable, and all zeros are isolated, i.e., every
zero can be be surrounded with an interval containing no other zeros. Moreover,
assume that the zeros are non-degenerate, i.e., g′(xi) 6= 0 for all i ∈ I. Then

(25) δ(g(x)) =
∑
i∈I

δ(x− xi)
|g′(xi)|

(4) Effect on functions: For any continuous function f(x)∫ ∞
−∞

f(x)δ(x)dx = f(0).

Therefore, ∫ ∞
−∞

f(x)δ(x− a)dx = f(a).

(5) ∫ ∞
−∞

f(x)δ(g(x))dx =
∑
i∈I

f(xi)

|g′(xi)|
,

where {xi}i∈I is the set of zeros of g(x) satisfying the assumptions for Eq. (25).

Generalization to Rn

Definition 8. In Rn, δ(x) = δ(x1)δ(x2) . . . δ(xn).

Properties
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(1) Effect on functions: ∫
Rn
f(x)δ(x− a)dx = f(a).

(2) Scaling:

δ(ax) =
δ(x)

|a|n
.

(3) Symmetry: for any orthogonal matrix T ∈ O(n),

δ(Tx) = δ(x).

(4) Composition:∫
Rn
f(x)δ(g(x))dx =

∫
Σ

f(x)

|∇g|
dσ(x), where Σ := {x ∈ Rn | g(x) = 0}.∫

Rn
f(x)δ(g(x)− z)dx =

∫
Σ

f(x)

|∇g|
dσ(x), where Σ := {x ∈ Rn | g(x) = z}.

8.2. Free energy. Consider a system of particles assuming states (x, p) ∈ R2n with total
energy H(x, p) = V (x)+T (p). Assume that the system is in contact with a heat bath (i.e.,
the temperature is kept constant) and its states follow the canonical distribution

(26) µ(x, p) =
1

Z
e−βH(x,p), Z =

∫
R2n

e−βH(x,p)dxdp.

Assume that the energy H(x, p) is bounded from below, and its level sets

(27) Σ(E) := {(x, p) ∈ R2n | H(x, p) = E}
are compact for all E ∈ R.

• Consider the hamiltonian or the total energy H(x, p). This is a random variable
H(x, p) whose distribution function is not given analytically beforehand. Note that
H(x, p) foliates the set of outcomes R2n into the energy level sets (27). The pdf of
H(x, p) can be defined using the δ-function as follows:

µH(E) :=
1

Z

∫
R2n

e−βH(x,p)δ(H(x, p)− E)dxdp.

Then
P (E < H(x, p) ≤ E + dE) = µH(E)dE.

The quantity

Ω(E) =

∫
R2n

δ(H(x, p)− E)dxdp

is called the density of states. Then we have:

µH(E) =
1

Z

∫
R2n

e−βH(x,p)δ(H(x, p)− E)dxdp

=
1

Z
e−βE

∫
R2n

δ(H(x, p)− E)dxdp =
1

Z
Ω(E)e−βE .
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The free energy F (E) of the macroscopic observable energy H(x, p) is defined from
the relationship

µH(E) =
1

Z
Ω(E)e−βE =

1

Z
e−βF (E).

Hence,

(28) F (E) = E − β−1 log Ω(E).

• More generally, let θ(x, p) be an arbitrary random variable (e.g., a collective variable
i.e. a macroscopic observable) whose pdf is not known in advance. Then we define
the pdf of θ by

µθ(z) :=
1

Z

∫
R2n

e−βH(x,p)δ(θ(x, p)− z)dxdp.

We want µθ(z) to be of the heart-pleasing form

µθ(z) =
1

Z
e−βF (z).

Then the quantity F (z) called the free energy associated with the collective variable
θ is given by

(29) F (z) = −β−1 log

(∫
R2n

e−βH(x,p)δ(θ(x, p)− z)dxdp
)
.

Remark In some works, the following definition of the free energy is found:

µθ(z) = e−βF (z).

Then

(30) F (z) = −β−1 log

(
1

Z

∫
R2n

e−βH(x,p)δ(θ(x, p)− z)dxdp
)
.

• The co-area formula. The δ-function in the definition of the free energy is a
symbolic expression whose meaning is provided by the co-area formula. Let θ(x, p)
be a random variable that is a smooth function of x and p. Then R2n is foliated
by the hyper-surfaces

Σ(z) = {x ∈ R2n | θ(x, p) = z}.

Then for any integrable function f(x) we have∫
R2n

f(x, p)dxdp =

∫
R
dz′
∫

Σ(z′)

fdσ

|∇θ|
.

Here |∇(θ)| is the absolute value of the gradient of θ on the hyper-surface Σ(z′)
and dσ is the surface element. Hence for the integrable function f(x)δ(θ(x, p)− z)
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we have ∫
R2n

f(x)δ(θ(x, p)− z)dx =

∫
R
dz′
∫

Σ(z′)

fδ(z − z′)dσ
|∇θ|

=

∫
Σ(z)

fdσ

|∇θ|
.(31)

The identity (31) is called the co-area formula.
Using this expression, we can rewrite the definition of the free energy (29) as

(32) Fθ(z) = −β−1 log

(∫
Σ(z)

e−βH(x,p)|∇θ|−1dσ

)
.

• Suppose we care about the random variable η(x, p) (a macroscopic observable).
As we switch to the random variable θ(x, p), we need to obtain as accurate ap-
proximation of η(x, p) by a function of θ as possible. This approximation is given
by

(33) E[η|θ] =

∫
R2n η(x, p)e−βH(x,p)δ(θ(x, p)− z)dxdp∫

R2n e−βH(x,p)δ(θ(x, p)− z)dxdp
.

Using the core formula (31) we can rewrite E[η|θ] as

(34) E[η|θ] =

∫
Σ(z′) η|∇θ|

−1e−βH(x,p)dσ∫
Σ(z′) |∇θ|−1e−βH(x,p)dσ

Example 22 Consider a particle evolving according to the overdamped
Langevin dynamics in the potential energy landscape V (x, y) = x2 +y2 and
obeying the Gibbs distribution

f(x, y) =
β

π
e−β(x2+y2).

Calculate the pdf of the random variable V (x, y) = x2 + y2:

µV (E) =
β

π

∫
R2

e−β(x2+y2)δ(x2 + y2 − E)dxdy

=
β

π
e−βE

∫
r=
√
E

1

2
√
E
dl =

β

π
e−βE

2π
√
E

2
√
E

=βe−βE

Note that ∫ ∞
0

µV (E)dE =

∫ ∞
0

βe−βE = 1

as it should be. The free energy is found from the relationship

βe−βE =
β

π
e−βF (E).
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Therefore,

F (E) = E − β−1 log π.

Example 23 Consider a particle evolving according to the overdamped
Langevin dynamics in the potential energy landscape V (x, y) = x2 +y2 +xy
and obeying the Gibbs distribution

f(x, y) =
β
√

3

2π
e−β(x2+y2+xy).

Let θ(x, y) ∈ [−π, π) be the polar angle of the point (x, y). Let us calculate

E[
√
x2 + y2|θ] using Eq. (33). Let r =

√
x2 + y2.

E[r|θ] =

∫
R2n r(x, y)e−β(x2+y2+xy)δ(θ(x, y)− z)dxdy∫

R2n e−β(x2+y2+xy)δ(θ(x, y)− z)dxdy
=:

I1

I2
.

Note that I2 ≡ µθ(z) is the free energy associated with the polar angle θ.
Recall that

θ(x, y) =


arctan(y/x), x ≥ 0,

π − arctan(y/x), x < 0, y ≥ 0,

−π + arctan(y/x), x < 0, y ≤ 0,

and

∇θ(x, y) =

[
−y

x2+y2
x

x2+y2

]
. Hence, |∇θ| = 1

r
.

First compute I2:

I2 =

∫ ∞
0

e−βr
2(1+

1
2 sin(2z))rdr =

1

2

∫ ∞
0

e−β(1+
1
2 sin(2z))tdt

=
1

2β(1 + 1
2 sin(2z))

.

Now compute I1:

I1 =

∫ ∞
0

e−βr
2(1+

1
2 sin(2z))r2dr =

1

2

∫ ∞
0

e−t
2
t2

β3/2(1 + 1
2 sin(2z))3/2

dt

=
1

2

1

β3/2(1 + 1
2 sin(2z))3/2

√
π

2

Therefore,

E[r|θ] =
I1

I2
=

1

2

√
π

β(1 + 1
2 sin(2θ))

.
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