Publications

Ordered Line Integral Methods for Computing the Quasi-potential, Daisy Dahiya and Maria Cameron, J. Scientific Computing, in revision,  ArXiv: 1706.07509


Modeling Aggregation Processes of Lennard-Jones Particles via Stochastic NetworksYakir Forman and Maria Cameron, J. Statistical Physics  168(2), 408-433 (2017) DOI: 10.1007/s10955-017-1794-y, ArXiv: 1612.09599


A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains,  Tingyue Gan and Maria Cameron, J. Nonlinear Science, Vol. 27, 3, (June 2017), pp. 927-972doi: 10.1007/s00332-016-9355-0, ArXiv: 1607.00078


Spectral Analysis ans Clustering of Large Stochastic Networks. Application to the Lennard-Jones-75 cluster, M. Cameron and T. Gan, Molecular Simulation 42 (2016) Issue 16: Special Issue on Nonequilibrium Systems,  1410-1428, doi: 10.1080/08927022.2016.1139109 ArXiv: 1511.05269


QPot: An R package for stochastic differential equation quasi-potential analysis

B. Nolting, C. Moore, C. Stieha, M. Cameron, K. Abbott, R Journal 8, 2, December 2016, ArXiv: 1510.07992v1


Metastability, Spectrum, and Eigencurrents of the Lennard-Jones-38 NetworkM. Cameron, J. Chem. Phys. (2014), 141, 184113 doi: 10.1063/1.4901131 arXiv: 1408.5630

http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4901131


Computing the Asymptotic Spectrum for Networks Representing Energy Landscapes using the Minimal Spanning Tree, M. Cameron, Networks and Heterogeneous Media, vol. 9,  number 3, pp. 383 - 416, Sept. 2014, doi:10.3934/nhm.2014.9.383arXiv:1402.2869 

https://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10424


Flows in Complex Networks: Theory, Algorithms, and Application to Lennard-Jones Cluster Rearrangement, M. Cameron and E. Vanden-Eijnden, Journal of Statistical Physics 156, 3, 427-454 (2014) (DOI) 10.1007/s10955-014-0997-8, arXiv:1402.1736


Computing Freidlin's cycles for the overdamped Langevin dynamics. Application to the Lennard-Jones-38 clusterM. K. Cameron, Journal of Statistical Physics, (2013), 152, 3, 493-518 (2013) (DOI) 10.1007/s10955-013-0770-4

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10955-013-0770-4 


Estimation of reactive fluxes in gradient stochastic systems using an analogy with electric circuits,

M. K. Cameron, Journal of Computational Physics, 247, pp. 137-152 (2013)

http://dx.doi.org/10.1016/j.jcp.2013.03.054


Finding the Quasipotential for Nongradient SDE's,

M. K. Cameron, Physica D: Nonlinear Phenomena, 241 (2012), pp. 1532-155

http://dx.doi.org/10.1016/j.physd.2012.06.005


The String Method as a Dynamical System

Maria Cameron, Robert Kohn, and Eric Vanden-Eijnden, 

Journal of Nonlinear Science, 21, Number 2, pp. 193-230 (2011)


 Analysis and Algorithms for a Regularized Cauchy Problem 

arising from a Non-Linear Elliptic PDE for Seismic Velocity Estimation,

Cameron, M.K., Fomel, S., Sethian, J.A., J. Comp. Phys., 228, pp.7388-7411, 2009 

http://dx.doi.org/10.1016/j.jcp.2009.06.036


Time-to-depth conversion and seismic velocity estimation using time-migration velocity

Cameron, M.K., Fomel, S., Sethian, J.A., Geophysics, 73, VE205, 2008 


 Inverse Problem in Seismic Imaging

Cameron, M.K., Fomel, S., Sethian, PAMM, 7, Issue 1, pp. 1024803-1024804, 2007 


 Seismic Velocity Estimation from Time Migration, 

Maria K. Cameron, Ph.D. Thesis, ProQuest, UC Berkeley, 2007 


 Seismic Velocity Estimation from Time Migration

Cameron, M. K., Fomel, S. B., Sethian, J. A., Inverse Problems, 23 , pp. 1329-1369, 2007 


Seismic velocity estimation and time-to-depth conversion of time-migrated images

Maria Cameron*, UC Berkeley; Sergey Fomel, UT Austin; James Sethian, UC Berkeley, 

SEG/New Orleans 2006 Technical Program Online (SVIP 1.7) 


 Copyright 2010, 2015 , 2017 by Maria Cameron