Maria K. Cameron
University of Maryland, Department of Mathematics
Publications
- Predicting molecule size distribution in hydrocarbon pyrolysis using random graph theory, Vincent Dufour-Decieux, Christopher Moakler, Maria Cameron, Evan Reed, submitted, arXiv:2205.13664
- Most probable escape paths in periodically driven nonlinear oscillators, Lautaro Cilenti, Maria Cameron, Balakumar Balachandran, submitted, arXiv:2203.14329
- An efficient jet marcher for computing the quasipotential for 2D SDEs, Nicholas Packal and Maria K. Cameron, accepted, Journal of Scientific Computing (Springer), arXiv:2109.03424
- Computing committors in collective variables via Mahalanobis diffusion maps, A. Luke Evans, Maria K. Cameron, and Pratyush Tiwary, submitted, 2021, arXiv:2108.08979
- Jet Marching Methods for Solving the Eikonal Equation, Samuel F. Potter and Maria K. Cameron, SIAM Journal of Scientific Computing, 43(6), A4121--A4146 (2021), arXiv:2009.05490
- Ordered Line Integral Methods for Solving the Eikonal Equation, Samuel F. Potter and Maria K. Cameron, Journal of Scientific Computing, 81(3) (2019), 2010–2050, https://doi.org/10.1007/s10915-019-01077-z, arXiv:1902.06825
- Computing the quasipotential for highly dissipative and chaotic SDEs. An application to stochastic Lorenz’63, Maria Cameron and Shuo Yang, Communications in Applied Mathematics and Computational Science (CAMCoS) 14-2 (2019), 207--246. DOI: 10.2140/camcos.2019.14.207arXiv:1809.09987v2
- Computing the quasipotential for nongradient SDEs in 3D, Shuo Yang, Samuel F. Potter, and Maria K. Cameron, Journal of Computational Physics, 379 (2019) 325-350, https://doi.org/10.1016/j.jcp.2018.12.005, arXiv: 1808.00562
- An Ordered Line Integral Method for Computing the Quasi-potential in the case of Variable Anisotropic Diffusion, Daisy Dahiya and Maria Cameron, 2018, Physica D 382-383 (2018), 33–45, https://doi.org/10.1016/j.physd.2018.07.002, arXiv:1806.05321
-
Ordered Line Integral Methods for Computing the Quasi-potential, Daisy Dahiya and Maria Cameron, J. Scientific Computing, 75(3), 1351-1384 (2018), https://doi.org/10.1007/s10915-017-0590-9, ArXiv: 1706.07509
- Modeling Aggregation Processes of Lennard-Jones Particles via Stochastic Networks, Yakir Forman and Maria Cameron, J. Statistical Physics 168(2), 408-433 (2017), DOI: 10.1007/s10955-017-1794-y, ArXiv: 1612.09599
- A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains, Tingyue Gan and Maria Cameron, J. Nonlinear Science, Vol. 27, 3, (June 2017), pp. 927-972, doi: 10.1007/s00332-016-9355-0, ArXiv: 1607.00078
- Spectral Analysis and Clustering of Large Stochastic Networks. Application to the Lennard-Jones-75 cluster, M. Cameron and T. Gan, Molecular Simulation 42 (2016) Issue 16: Special Issue on Nonequilibrium Systems, 1410-1428, doi: 10.1080/08927022.2016.1139109, ArXiv: 1511.05269
- QPot: An R package for stochastic differential equation quasi-potential analysis,
B. Nolting, C. Moore, C. Stieha, M. Cameron, K. Abbott, R Journal 8, 2, December 2016, ArXiv: 1510.07992v1
- Metastability, Spectrum, and Eigencurrents of the Lennard-Jones-38 Network, M. Cameron, J. Chem. Phys. (2014), 141, 184113 doi: 10.1063/1.4901131 arXiv: 1408.5630
http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4901131
- Computing the Asymptotic Spectrum for Networks Representing Energy Landscapes using the Minimal Spanning Tree, M. Cameron, Networks and Heterogeneous Media, vol. 9, number 3, pp. 383 - 416, Sept. 2014, doi:10.3934/nhm.2014.9.383, arXiv:1402.2869
https://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10424
- Flows in Complex Networks: Theory, Algorithms, and Application to Lennard-Jones Cluster Rearrangement, M. Cameron and E. Vanden-Eijnden, Journal of Statistical Physics 156, 3, 427-454 (2014) (DOI) https://doi.org/10.1007/s10955-014-0997-8, arXiv:1402.1736
- Computing Freidlin's cycles for the overdamped Langevin dynamics. Application to the Lennard-Jones-38 cluster, M. K. Cameron, Journal of Statistical Physics, (2013), 152, 3, 493-518 (2013) (DOI) 10.1007/s10955-013-0770-4
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10955-013-0770-4
- Estimation of reactive fluxes in gradient stochastic systems using an analogy with electric circuits,
M. K. Cameron, Journal of Computational Physics, 247, pp. 137-152 (2013)
http://dx.doi.org/10.1016/j.jcp.2013.03.054
- Finding the Quasipotential for Nongradient SDE's,
M. K. Cameron, Physica D: Nonlinear Phenomena, 241 (2012), pp. 1532-1550
http://dx.doi.org/10.1016/j.physd.2012.06.005
- The String Method as a Dynamical System,
Maria Cameron, Robert Kohn, and Eric Vanden-Eijnden,
Journal of Nonlinear Science, 21, Number 2, pp. 193-230 (2011)
- Analysis and Algorithms for a Regularized Cauchy Problem
arising from a Non-Linear Elliptic PDE for Seismic Velocity Estimation,
Cameron, M.K., Fomel, S., Sethian, J.A., J. Comp. Phys., 228, pp.7388-7411, 2009
http://dx.doi.org/10.1016/j.jcp.2009.06.036
- Time-to-depth conversion and seismic velocity estimation using time-migration velocity,
Cameron, M.K., Fomel, S., Sethian, J.A., Geophysics, 73, VE205, 2008
- Inverse Problem in Seismic Imaging,
Cameron, M.K., Fomel, S., Sethian, PAMM, 7, Issue 1, pp. 1024803-1024804, 2007
- Seismic Velocity Estimation from Time Migration,
Maria K. Cameron, Ph.D. Thesis, ProQuest, UC Berkeley, 2007
- Seismic Velocity Estimation from Time Migration,
Cameron, M. K., Fomel, S. B., Sethian, J. A., Inverse Problems, 23(4), pp. 1329-1369, 2007,DOI: https://doi.org/10.1088/0266-5611/23/4/001
- Seismic velocity estimation and time-to-depth conversion of time-migrated images,
Maria Cameron*, UC Berkeley; Sergey Fomel, UT Austin; James Sethian, UC Berkeley,
SEG/New Orleans 2006 Technical Program Online (SVIP 1.7)
Copyright 2010, 2015 , 2017, 2018 by Maria Cameron